Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower tri...Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.展开更多
A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified ...A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.展开更多
本文提出了一种MIMO(Multi-Input and Multi-Output)系统中的新型自适应调制和功率分配算法,在奇异值分解的基础上通过注水算法进行功率分配,此后根据所分配的功率与信道状态信息来确定自适应调制的门限及相应的调制阶数,并在自适应调...本文提出了一种MIMO(Multi-Input and Multi-Output)系统中的新型自适应调制和功率分配算法,在奇异值分解的基础上通过注水算法进行功率分配,此后根据所分配的功率与信道状态信息来确定自适应调制的门限及相应的调制阶数,并在自适应调制后通过功率修正因子来弥补常见算法中功率不能得到有效利用的问题,仿真结果表明该算法可以得到较高的频谱效率。展开更多
Deep Neural Networks(DNNs)have become the tool of choice for machine learning practitioners today.One important aspect of designing a neural network is the choice of the activation function to be used at the neurons o...Deep Neural Networks(DNNs)have become the tool of choice for machine learning practitioners today.One important aspect of designing a neural network is the choice of the activation function to be used at the neurons of the different layers.In this work,we introduce a four-output activation function called the Reflected Rectified Linear Unit(RRe LU)activation which considers both a feature and its negation during computation.Our activation function is"sparse",in that only two of the four possible outputs are active at a given time.We test our activation function on the standard MNIST and CIFAR-10 datasets,which are classification problems,as well as on a novel Computational Fluid Dynamics(CFD)dataset which is posed as a regression problem.On the baseline network for the MNIST dataset,having two hidden layers,our activation function improves the validation accuracy from 0.09 to 0.97 compared to the well-known Re LU activation.For the CIFAR-10 dataset,we use a deep baseline network that achieves 0.78 validation accuracy with 20 epochs but overfits the data.Using the RRe LU activation,we can achieve the same accuracy without overfitting the data.For the CFD dataset,we show that the RRe LU activation can reduce the number of epochs from 100(using Re LU)to 10 while obtaining the same levels of performance.展开更多
基金National Natural Science Foundation of China (10972104) The Fundamental Research Funds for NUAA(NS2010007)
文摘Both auto-power spectrum and cross-power spectrum need to be controlled in multi-input multi-output (MIMO) random vibration test. During the control process with the difference control algorithm (DCA), a lower triangular matrix is derived from Cholesky decomposition of a reference spectrum matrix. The diagonal elements of the lower triangular matrix (DELTM) may become negative. These negative values have no meaning in physical significance and can cause divergence of auto-power spectrum control. A proportional root mean square control algorithm (PRMSCA) provides another method to avoid the divergence caused by negative values of DELTM, but PRMSCA cannot control the cross-power spectrum. A new control algorithm named matrix power control algorithm (MPCA) is proposed in the paper. MPCA can guarantee that DELTM is always positive in the auto-power spectrum control. MPCA can also control the cross-power spectrum. After these three control algorithms are analyzed, three-input three-output random vibration control tests are implemented on a three-axis vibration shaker. The results show the validity of the proposed MPCA.
基金supported by the Priority Academic Program Development of Jiangsu Higher Education Institutionsthe Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. KYCX17_0234)
文摘A control method for Multi-Input Multi-Output(MIMO) non-Gaussian random vibration test with cross spectra consideration is proposed in the paper. The aim of the proposed control method is to replicate the specified references composed of auto spectral densities, cross spectral densities and kurtoses on the test article in the laboratory. It is found that the cross spectral densities will bring intractable coupling problems and induce difficulty for the control of the multioutput kurtoses. Hence, a sequential phase modification method is put forward to solve the coupling problems in multi-input multi-output non-Gaussian random vibration test. To achieve the specified responses, an improved zero memory nonlinear transformation is utilized first to modify the Fourier phases of the signals with sequential phase modification method to obtain one frame reference response signals which satisfy the reference spectra and reference kurtoses. Then, an inverse system method is used in frequency domain to obtain the continuous stationary drive signals. At the same time, the matrix power control algorithm is utilized to control the spectra and kurtoses of the response signals further. At the end of the paper, a simulation example with a cantilever beam and a vibration shaker test are implemented and the results support the proposed method very well.
文摘本文提出了一种MIMO(Multi-Input and Multi-Output)系统中的新型自适应调制和功率分配算法,在奇异值分解的基础上通过注水算法进行功率分配,此后根据所分配的功率与信道状态信息来确定自适应调制的门限及相应的调制阶数,并在自适应调制后通过功率修正因子来弥补常见算法中功率不能得到有效利用的问题,仿真结果表明该算法可以得到较高的频谱效率。
文摘Deep Neural Networks(DNNs)have become the tool of choice for machine learning practitioners today.One important aspect of designing a neural network is the choice of the activation function to be used at the neurons of the different layers.In this work,we introduce a four-output activation function called the Reflected Rectified Linear Unit(RRe LU)activation which considers both a feature and its negation during computation.Our activation function is"sparse",in that only two of the four possible outputs are active at a given time.We test our activation function on the standard MNIST and CIFAR-10 datasets,which are classification problems,as well as on a novel Computational Fluid Dynamics(CFD)dataset which is posed as a regression problem.On the baseline network for the MNIST dataset,having two hidden layers,our activation function improves the validation accuracy from 0.09 to 0.97 compared to the well-known Re LU activation.For the CIFAR-10 dataset,we use a deep baseline network that achieves 0.78 validation accuracy with 20 epochs but overfits the data.Using the RRe LU activation,we can achieve the same accuracy without overfitting the data.For the CFD dataset,we show that the RRe LU activation can reduce the number of epochs from 100(using Re LU)to 10 while obtaining the same levels of performance.