In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(S...In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.展开更多
The dynamic mechanism of the vortex generation and evolution process in a fully developed turbulent boundary layer with Reθ=97-194 is experimentally investigated.In this study,a moving single-frame and long-exposure(...The dynamic mechanism of the vortex generation and evolution process in a fully developed turbulent boundary layer with Reθ=97-194 is experimentally investigated.In this study,a moving single-frame and long-exposure(MSFLE)imaging method and a moving particle image velocimetry/particle tracing velocimetry(M-PIV/PTV)are designed and implemented for measuring the temporal and spatial evolution of vortex cores in both qualitative and quantitative ways,respectively.On the other hand,the Liutex vector,which is a new mathematical definition and identification of the vortex core proposed by Liu’s group,is first applied in the experiment for the structural visualization and quantitative analysis of the local fluid rotation.The results show that an intuitional process of vortex evolution can be clearly observed by tracking the vortex using MSFLE and verify that the roll-up of the shear layer induced by shear instability is the origin of vortex formation in turbulence.Furthermore,a quantitative investigation in terms of the critical vortex core boundary(size)and its accurate rotation strength is carried out based on the Liutex vector field analysis by M-PIV/PTV.According to statistics of the relation between vortex core size and the rotation strength during the whole process,the physical mechanism of vortex generation and evolution in a turbulent boundary layer of low Reynolds number can be summarized as a four-dominant-state course consisting of the“synchronous linear segment(SL)-absolute enhancement segment(AE)-absolute diffusion segment(AD)-skewing dissipation segment(SD)”.展开更多
In this paper, a novel data mining method is introduced to solve the multi-objective optimization problems of process industry. A hyperrectangle association rule mining (HARM) algorithm based on support vector machi...In this paper, a novel data mining method is introduced to solve the multi-objective optimization problems of process industry. A hyperrectangle association rule mining (HARM) algorithm based on support vector machines (SVMs) is proposed. Hyperrectangles rules are constructed on the base of prototypes and support vectors (SVs) under some heuristic limitations. The proposed algorithm is applied to a simulated moving bed (SMB) paraxylene (PX) adsorption process. The relationships between the key process variables and some objective variables such as purity, recovery rate of PX are obtained. Using existing domain knowledge about PX adsorption process, most of the obtained association rules can be explained.展开更多
Background difference method[l] is one of the effective paths of improving robot' s vision reaction ability, and robots use background difference method to find the moving object in vision range and conduct tracking ...Background difference method[l] is one of the effective paths of improving robot' s vision reaction ability, and robots use background difference method to find the moving object in vision range and conduct tracking monitoring of moving objects. Then it uses support vector to conduct learning fitting of moving object, which can effectively predict the moving trend of moving object, and then it fabricates corresponding decision programs to conduct intercept capture of moving objects.展开更多
We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is app...We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is applied for time discretization.Compared with the average vector field method on the uniform mesh,the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation.This is due to the moving mesh method,which can concentrate the grid points more densely where the solution changes drastically.Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.展开更多
基金Projects(61471370,61401479)supported by the National Natural Science Foundation of China
文摘In order to improve measurement accuracy of moving target signals, an automatic target recognition model of moving target signals was established based on empirical mode decomposition(EMD) and support vector machine(SVM). Automatic target recognition process on the nonlinear and non-stationary of Doppler signals of military target by using automatic target recognition model can be expressed as follows. Firstly, the nonlinearity and non-stationary of Doppler signals were decomposed into a set of intrinsic mode functions(IMFs) using EMD. After the Hilbert transform of IMF, the energy ratio of each IMF to the total IMFs can be extracted as the features of military target. Then, the SVM was trained through using the energy ratio to classify the military targets, and genetic algorithm(GA) was used to optimize SVM parameters in the solution space. The experimental results show that this algorithm can achieve the recognition accuracies of 86.15%, 87.93%, and 82.28% for tank, vehicle and soldier, respectively.
基金supported by the National Natural Science Foundation of China(Grants Nos.51906154,51576130)the National Science and Technology Major Project(Grant No.2017-V-0016-0069).
文摘The dynamic mechanism of the vortex generation and evolution process in a fully developed turbulent boundary layer with Reθ=97-194 is experimentally investigated.In this study,a moving single-frame and long-exposure(MSFLE)imaging method and a moving particle image velocimetry/particle tracing velocimetry(M-PIV/PTV)are designed and implemented for measuring the temporal and spatial evolution of vortex cores in both qualitative and quantitative ways,respectively.On the other hand,the Liutex vector,which is a new mathematical definition and identification of the vortex core proposed by Liu’s group,is first applied in the experiment for the structural visualization and quantitative analysis of the local fluid rotation.The results show that an intuitional process of vortex evolution can be clearly observed by tracking the vortex using MSFLE and verify that the roll-up of the shear layer induced by shear instability is the origin of vortex formation in turbulence.Furthermore,a quantitative investigation in terms of the critical vortex core boundary(size)and its accurate rotation strength is carried out based on the Liutex vector field analysis by M-PIV/PTV.According to statistics of the relation between vortex core size and the rotation strength during the whole process,the physical mechanism of vortex generation and evolution in a turbulent boundary layer of low Reynolds number can be summarized as a four-dominant-state course consisting of the“synchronous linear segment(SL)-absolute enhancement segment(AE)-absolute diffusion segment(AD)-skewing dissipation segment(SD)”.
基金Supported by the National Natural Science Foundation of China (No. 60421002)National Outstanding Youth Science Foundation of China (No. 60025308)the New Century 151 Talent Project of Zhejiang Province.
文摘In this paper, a novel data mining method is introduced to solve the multi-objective optimization problems of process industry. A hyperrectangle association rule mining (HARM) algorithm based on support vector machines (SVMs) is proposed. Hyperrectangles rules are constructed on the base of prototypes and support vectors (SVs) under some heuristic limitations. The proposed algorithm is applied to a simulated moving bed (SMB) paraxylene (PX) adsorption process. The relationships between the key process variables and some objective variables such as purity, recovery rate of PX are obtained. Using existing domain knowledge about PX adsorption process, most of the obtained association rules can be explained.
文摘Background difference method[l] is one of the effective paths of improving robot' s vision reaction ability, and robots use background difference method to find the moving object in vision range and conduct tracking monitoring of moving objects. Then it uses support vector to conduct learning fitting of moving object, which can effectively predict the moving trend of moving object, and then it fabricates corresponding decision programs to conduct intercept capture of moving objects.
基金the National Key R&D Program of China(Grant No.2020YFA0709800)the National Natural Science Foundation of China(Grant Nos.11901577,11971481,12071481,and 12001539)+3 种基金the Natural Science Foundation of Hunan,China(Grant Nos.S2017JJQNJJ0764 and 2020JJ5652)the fund from Hunan Provincial Key Laboratory of Mathematical Modeling and Analysis in Engineering(Grant No.2018MMAEZD004)the Basic Research Foundation of National Numerical Wind Tunnel Project,China(Grant No.NNW2018-ZT4A08)the Research Fund of National University of Defense Technology(Grant No.ZK19-37)。
文摘We propose a novel energy dissipative method for the Allen–Cahn equation on nonuniform grids.For spatial discretization,the classical central difference method is utilized,while the average vector field method is applied for time discretization.Compared with the average vector field method on the uniform mesh,the proposed method can involve fewer grid points and achieve better numerical performance over long time simulation.This is due to the moving mesh method,which can concentrate the grid points more densely where the solution changes drastically.Numerical experiments are provided to illustrate the advantages of the proposed concrete adaptive energy dissipative scheme under large time and space steps over a long time.