As a typical rhythmic movement, human being's rhythmic gait movement can be generated by a central pattern generator (CPG) located in a spinal cord by self- oscillation. Some kinds of gait movements are caused by g...As a typical rhythmic movement, human being's rhythmic gait movement can be generated by a central pattern generator (CPG) located in a spinal cord by self- oscillation. Some kinds of gait movements are caused by gait frequency and amplitude variances. As an important property of human being's motion vision, the attention selection mechanism plays a vital part in the regulation of gait movement. In this paper, the CPG model is amended under the condition of attention selection on the theoretical basis of Matsuoka neural oscillators. Regulation of attention selection signal for the CPG model parameters and structure is studied, which consequentially causes the frequency and amplitude changes of gait movement output. Further, the control strategy of the CPG model gait movement under the condition of attention selection is discussed, showing that the attention selection model can regulate the output model of CPG gait movement in three different ways. The realization of regulation on the gait movement frequency and amplitude shows a variety of regulation on the CPG gait movement made by attention selection and enriches the controllability of CPG gait movement, which demonstrates potential influence in engineering applications.展开更多
Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales...Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales and temporal movement levels were run within several analytical modeling frameworks for comparison. Included in the analysis were multi-scale raster grains (30 m, 90 m, 180 m, 360 m, 720 m, 1440 m) and GPS collaring temporal movement levels (point, path, and step). Various analytical methods were used for comparison of models that could accommodate data structural levels (group, individual, case-control). Models compared included conditional logistic regression, generalized additive modeling (GAM), and classification regression trees, such as random forests (RF) and gradient boosted regression tree (GBM). The goals of the study were to discuss the potential and limitations for machine learning methods using GPS collaring data to produce predictive habitat suitability mapping using the various scales and levels available. Results indicated that choosing the appropriate temporal level and raster scale improved model outputs. Overall, larger level analytical modeling frameworks and those that used multi-scale raster grains showed the best model evaluation with the inherent condition that they predict a broader scale and subset of data. The identification of the appropriate spatial scale, temporal scale and statistical model need careful consideration in predictive mapping efforts.展开更多
基金supported by the National Natural Science Foundation of China(Nos.11232005 and11472104)the Doctoral Fund of Ministry of Education of China(No.20120074110020)
文摘As a typical rhythmic movement, human being's rhythmic gait movement can be generated by a central pattern generator (CPG) located in a spinal cord by self- oscillation. Some kinds of gait movements are caused by gait frequency and amplitude variances. As an important property of human being's motion vision, the attention selection mechanism plays a vital part in the regulation of gait movement. In this paper, the CPG model is amended under the condition of attention selection on the theoretical basis of Matsuoka neural oscillators. Regulation of attention selection signal for the CPG model parameters and structure is studied, which consequentially causes the frequency and amplitude changes of gait movement output. Further, the control strategy of the CPG model gait movement under the condition of attention selection is discussed, showing that the attention selection model can regulate the output model of CPG gait movement in three different ways. The realization of regulation on the gait movement frequency and amplitude shows a variety of regulation on the CPG gait movement made by attention selection and enriches the controllability of CPG gait movement, which demonstrates potential influence in engineering applications.
文摘Multi-level multi-scale resource selection models using machine learning were compared and contrasted for generating predictive maps of jaguar habitat (Panthera onca) in the Brazilian Pantanal. Multiple spatial scales and temporal movement levels were run within several analytical modeling frameworks for comparison. Included in the analysis were multi-scale raster grains (30 m, 90 m, 180 m, 360 m, 720 m, 1440 m) and GPS collaring temporal movement levels (point, path, and step). Various analytical methods were used for comparison of models that could accommodate data structural levels (group, individual, case-control). Models compared included conditional logistic regression, generalized additive modeling (GAM), and classification regression trees, such as random forests (RF) and gradient boosted regression tree (GBM). The goals of the study were to discuss the potential and limitations for machine learning methods using GPS collaring data to produce predictive habitat suitability mapping using the various scales and levels available. Results indicated that choosing the appropriate temporal level and raster scale improved model outputs. Overall, larger level analytical modeling frameworks and those that used multi-scale raster grains showed the best model evaluation with the inherent condition that they predict a broader scale and subset of data. The identification of the appropriate spatial scale, temporal scale and statistical model need careful consideration in predictive mapping efforts.