In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The ...In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.展开更多
The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle, but in a centrifugal pump, among the forces that act on the particles, one should also include those due to th...The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle, but in a centrifugal pump, among the forces that act on the particles, one should also include those due to the impeller rotation, as additional effects. This paper firstly reviews various approximations of the BBO equation for the motion of dispersion particles in a viscous fluid. Then based on the motion equation for particles in low Reynolds number centrifugal pumps, a formula for calculating the tracking characteristics of tracer particles is deduced through the Fourier integral transformation. After that the deviations of the particle motion from the fluid motion, as predicted by the various approximations, are discussed and compared. At last, with an emphasis on the Particle Image Velocimetry (PIV) results, the tracking characteristics of particles are estimated. Also, advantages and disadvantages of different tracer particles are discussed and suitable tracer particles for application in PIV studies for flow fields in centrifugal pumps are suggested.展开更多
In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.Bu...In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.But such an approach has not been proved rigorously,and its accuracy must be carefully considered.In this paper,we discuss the problem of a sphere moving in a non-uniform flow field,on the basis of the fundamental theory of hydrodynamics.We introduce two assumptions:i)the diameter of the sphere is much smaller than the linear dimension of the flow field,and ii)the velocity of the sphere relative to the surrounding water is very small.Using these two assumptions,we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform,and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field.展开更多
Solid contamination existing as solid particles in power fluid transmission systems may lead to transmission performance reduction,system failures,and component damage.The hydraulic reservoir will deposit the contamin...Solid contamination existing as solid particles in power fluid transmission systems may lead to transmission performance reduction,system failures,and component damage.The hydraulic reservoir will deposit the contamination and store hydraulic fluid.To investigate its purification ability for solid contamination,experiments and simulations for the motion and deposition status of the typical hydraulic system particles are carried out to reveal the interaction of particles and fluid in hydraulic water reservoirs.The results show that the CFD-DEM coupling method could predict the accurate deposition position of iron particles and sand particles when ignoring the small-scale turbulence effect in the flow field.Besides,the particle motion traces and deposition patterns in the reservoir illustrate that the flow development on the bottom surface results in the particles turning,and particles tend to settle in the low flow energy position.The motion of particles is also linked to particles Stokes number,and the same-size sand particles are easily driven by the fluid.The contribution of this paper could provide a guide for predicting the particle motion and deposition pattern in the hydraulic reservoir.展开更多
In this article, a novel speculative method is used to derive the relativistic mechanic that governs the motion of the vibrating string within the compactified-dimensions spacetime. This mechanic claims that the relat...In this article, a novel speculative method is used to derive the relativistic mechanic that governs the motion of the vibrating string within the compactified-dimensions spacetime. This mechanic claims that the relativistic mechanic of the special relativity should be only valid for the motion within the familiar four-dimensional spacetime. However, our novel mechanic is valid for the motion within the compactified-dimensions spacetime predicted by the string theory. The equations of this new mechanic show that the vibrating string can move within the compactified dimensions in a speed that is faster than light. It is also shown that this new relativistic mechanic goes to the classical Newtonian mechanic whenever the speed of the vibrating string is much less than the speed of light. Since the proposed mechanic does not prohibit the existence faster than light motion, it may uncover some of the mysteries regarding the string theory, such as the existence of tachyon and time travel. The main goal of this paper is to show that the motion within the compactified-dimensions spacetime obeys a different relativistic mechanic that will provide a startling and revolutionary perspective on the universe and answer some of the fundamental questions posed in the modern physics.展开更多
This paper presents a numerical study of the deposition of spherical charged nano-particles caused by convection, Brownian diffusion and electrostatics in a pipe with a cartilaginous ring structure. The model describe...This paper presents a numerical study of the deposition of spherical charged nano-particles caused by convection, Brownian diffusion and electrostatics in a pipe with a cartilaginous ring structure. The model describes the deposition of charged particles in the different generations of the tracheobronchial tree of the human lung. The upper airways are characterized by a certain wall structure called cartilaginous rings which modify the particle deposition when compared to an airway with a smooth wall. The problem is defined by solving Naver-Stokes equations in combination with a convective-diffusion equation and Gauss law for electrostatics. Three non- dimensional parameters describe the problem, the Peclet number Pe = 2ūa/D , the Reynolds number Re = ūa/v and an electrostatic parameter α=α2c0q2/(4ε0κT) . Here U is the mean velocity, a the pipe radius and D the diffusion coefficient due to Brownian motion given by D=κTCu/3πμd , where Cu is the Cunningham-factor Cu=1+λ/d(2.34+1.05exp(-0.39d/λ)) Here d is the particle diameter and λ the mean free path of the air molecules. Results are provided for generations G4-G16 of the human airways. The electrostatic parameter is varied to model different concentrations and charge numbers.展开更多
The equation of probability distribution function for mean fibre orientation in a turbulent boundary layer is derived, in which the correlation terms of the fluctuating velocity, fluctuating angular velocity with the ...The equation of probability distribution function for mean fibre orientation in a turbulent boundary layer is derived, in which the correlation terms of the fluctuating velocity, fluctuating angular velocity with the fluctuating probability distribution function are related to the gradient of mean probability distribution function and the dispersion coefficients in order to make the equation be solvable. The finite-difference method is used to solve the equation numerically. The results show that the fibres tend to align with the streamline, which is in agreement qualitatively with the experimental result given by visualization. The fibre aspect-ratio has a significant effect on the orientation distribution of fibres, while the effect of the distance from the wall is negligible.展开更多
We propose an alternative scheme for preparing N-qubit cluster state by using a frequency-modulated laser field to simultaneously illuminate the trapped ions. Selecting the index of modulation yields the selective mec...We propose an alternative scheme for preparing N-qubit cluster state by using a frequency-modulated laser field to simultaneously illuminate the trapped ions. Selecting the index of modulation yields the selective mechanisms of coupling and decoupling between the internal and external states of the ions. Based on the selective mechanisms, the highly entangled cluster state is achieved. In our scheme, the vibration mode is only virtually excited. Thus the quantum operations are insensitive to the heating and lead to the high-fidelity quantum information processing.展开更多
An equation is derived to explain the General Theory of Relativity and the effects of GTR: the rotations of planets' perihilion, deflects of star light by a gravitational mass, and the existence of gravitational w...An equation is derived to explain the General Theory of Relativity and the effects of GTR: the rotations of planets' perihilion, deflects of star light by a gravitational mass, and the existence of gravitational waves. Differentiation was used in the derivation but without the dependence of mass, space and time on velocity. The general postulates that are the bases of the new approach to electrodynamics were stated.展开更多
Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles in a direction normal to the mean streamlines of a two-dimensional turbulent flow is g...Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles in a direction normal to the mean streamlines of a two-dimensional turbulent flow is greatly influenced by the lift force exerted on them in the vicinity of the wall.Analytic solution shows that,when the direction of the mean flow is horizontal,the probability density function p(y,t)for random displacements of the particles will have a maximum value at a point from the wall where the perpendicular component of the lift force precisely balances particle gravity.Interpretation of experimental observations is presented using this theory.展开更多
We studied the rectified transport of underdamped particles subject to phase lag in an asymmetric periodic structure.When the inertia effect is considered,it is possible to observe reversals of the average velocity wi...We studied the rectified transport of underdamped particles subject to phase lag in an asymmetric periodic structure.When the inertia effect is considered,it is possible to observe reversals of the average velocity with small self-propelled force,whereas particles always move in the positive direction with large self-propelled force.The introduction of phase lag leads particles to follow circular orbits and suppress the polar motion.In addition,this can adjust the direction of particle motion.There exists an optimal value of polar interaction strength at which the rectification is maximal.These results open the way for many application processes,such as spatial sorting of particles mixture and separation based on their physical properties.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51134022 and 51174203)the Key Project of Chinese National Programs for Fundamental Research and Development (No. 2012CB214904)+2 种基金the National Natural Science Foundation of China for Innovative Research Group (No. 50921002)the Natural Science Foundation of Jiangsu Province (No. BK2010002)the Fundamental Research Funds for the Central Universities (Nos. 2010QNB11 and 2010ZDP01A06)
文摘In order to study the settling mechanism of particles in an air-solid magnetically stabilized fluidized bed(MSFB) for separation,we carried out free settling and quasi-zero settling tests on the tracing particles.The results show that the main resistance forces as the tracing particles settled in an air-solid MSFB were motion resistance force and yield force.The motion resistance and yield forces greatly hindered the free settling of the particles by greatly decreasing the acceleration for settling process of the particles.The acceleration decreased from 3022.62 cm/s 2 to zero in 0.1 s,and in the end,the particles stopped in the air-solid MSFB.The yield force on particles increased with increasing the magnetic field intensity,resulting in decrease of the quasi-zero settling displacement.However,the yield force on particles decreased with increasing the fluidized air velocity,leading to increase of the quasi-zero settling displacement.When the structure and operating parameters of the air-solid MSFB were set up,the yield stress on particles stopped in an air-solid MSFB was a function of diameter and density of particles.The settling displacements of equal diameter particles increased with increasing their densities,and the settling displacements of equal density particles increased with increasing their diameters.
基金supported by the National Outstanding Young Scientist Funds of China (Grant No.50825902)the Jiangsu Provincial Innovative Scholars "Climbing" Project of China(Grant No.BK2009006)the National Natural Science Foundation of China (Grant No.50979034)
文摘The Basset-Boussinesq-Oseen (BBO) equation can be used for most flows to trace the motion of a particle, but in a centrifugal pump, among the forces that act on the particles, one should also include those due to the impeller rotation, as additional effects. This paper firstly reviews various approximations of the BBO equation for the motion of dispersion particles in a viscous fluid. Then based on the motion equation for particles in low Reynolds number centrifugal pumps, a formula for calculating the tracking characteristics of tracer particles is deduced through the Fourier integral transformation. After that the deviations of the particle motion from the fluid motion, as predicted by the various approximations, are discussed and compared. At last, with an emphasis on the Particle Image Velocimetry (PIV) results, the tracking characteristics of particles are estimated. Also, advantages and disadvantages of different tracer particles are discussed and suitable tracer particles for application in PIV studies for flow fields in centrifugal pumps are suggested.
文摘In hydraulics,when we deal with the problem of sand particles moving relative to the surrounding water,Stokes'formula of resistance has usually been used to render the velocity of sedimentation of the particles.But such an approach has not been proved rigorously,and its accuracy must be carefully considered.In this paper,we discuss the problem of a sphere moving in a non-uniform flow field,on the basis of the fundamental theory of hydrodynamics.We introduce two assumptions:i)the diameter of the sphere is much smaller than the linear dimension of the flow field,and ii)the velocity of the sphere relative to the surrounding water is very small.Using these two assumptions,we solve the linearized Navier-Stokes equations and equations of continuity by the method of Laplace transform,and finally we obtain a formula for the resistance acting on a sphere moving in a non-uniform flow field.
基金National Key Research and Development Program of China(Grant No.2018YFB2000703)National Natural Science Foundation of China(Grant No.51975507).
文摘Solid contamination existing as solid particles in power fluid transmission systems may lead to transmission performance reduction,system failures,and component damage.The hydraulic reservoir will deposit the contamination and store hydraulic fluid.To investigate its purification ability for solid contamination,experiments and simulations for the motion and deposition status of the typical hydraulic system particles are carried out to reveal the interaction of particles and fluid in hydraulic water reservoirs.The results show that the CFD-DEM coupling method could predict the accurate deposition position of iron particles and sand particles when ignoring the small-scale turbulence effect in the flow field.Besides,the particle motion traces and deposition patterns in the reservoir illustrate that the flow development on the bottom surface results in the particles turning,and particles tend to settle in the low flow energy position.The motion of particles is also linked to particles Stokes number,and the same-size sand particles are easily driven by the fluid.The contribution of this paper could provide a guide for predicting the particle motion and deposition pattern in the hydraulic reservoir.
文摘In this article, a novel speculative method is used to derive the relativistic mechanic that governs the motion of the vibrating string within the compactified-dimensions spacetime. This mechanic claims that the relativistic mechanic of the special relativity should be only valid for the motion within the familiar four-dimensional spacetime. However, our novel mechanic is valid for the motion within the compactified-dimensions spacetime predicted by the string theory. The equations of this new mechanic show that the vibrating string can move within the compactified dimensions in a speed that is faster than light. It is also shown that this new relativistic mechanic goes to the classical Newtonian mechanic whenever the speed of the vibrating string is much less than the speed of light. Since the proposed mechanic does not prohibit the existence faster than light motion, it may uncover some of the mysteries regarding the string theory, such as the existence of tachyon and time travel. The main goal of this paper is to show that the motion within the compactified-dimensions spacetime obeys a different relativistic mechanic that will provide a startling and revolutionary perspective on the universe and answer some of the fundamental questions posed in the modern physics.
文摘This paper presents a numerical study of the deposition of spherical charged nano-particles caused by convection, Brownian diffusion and electrostatics in a pipe with a cartilaginous ring structure. The model describes the deposition of charged particles in the different generations of the tracheobronchial tree of the human lung. The upper airways are characterized by a certain wall structure called cartilaginous rings which modify the particle deposition when compared to an airway with a smooth wall. The problem is defined by solving Naver-Stokes equations in combination with a convective-diffusion equation and Gauss law for electrostatics. Three non- dimensional parameters describe the problem, the Peclet number Pe = 2ūa/D , the Reynolds number Re = ūa/v and an electrostatic parameter α=α2c0q2/(4ε0κT) . Here U is the mean velocity, a the pipe radius and D the diffusion coefficient due to Brownian motion given by D=κTCu/3πμd , where Cu is the Cunningham-factor Cu=1+λ/d(2.34+1.05exp(-0.39d/λ)) Here d is the particle diameter and λ the mean free path of the air molecules. Results are provided for generations G4-G16 of the human airways. The electrostatic parameter is varied to model different concentrations and charge numbers.
基金Supported by the National Natural Science Foundation of China under Grant No 10372090, and the Doctoral Program of Higher Education in China under Grant No 20030335001.
文摘The equation of probability distribution function for mean fibre orientation in a turbulent boundary layer is derived, in which the correlation terms of the fluctuating velocity, fluctuating angular velocity with the fluctuating probability distribution function are related to the gradient of mean probability distribution function and the dispersion coefficients in order to make the equation be solvable. The finite-difference method is used to solve the equation numerically. The results show that the fibres tend to align with the streamline, which is in agreement qualitatively with the experimental result given by visualization. The fibre aspect-ratio has a significant effect on the orientation distribution of fibres, while the effect of the distance from the wall is negligible.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10574052 and 60778005.
文摘We propose an alternative scheme for preparing N-qubit cluster state by using a frequency-modulated laser field to simultaneously illuminate the trapped ions. Selecting the index of modulation yields the selective mechanisms of coupling and decoupling between the internal and external states of the ions. Based on the selective mechanisms, the highly entangled cluster state is achieved. In our scheme, the vibration mode is only virtually excited. Thus the quantum operations are insensitive to the heating and lead to the high-fidelity quantum information processing.
文摘An equation is derived to explain the General Theory of Relativity and the effects of GTR: the rotations of planets' perihilion, deflects of star light by a gravitational mass, and the existence of gravitational waves. Differentiation was used in the derivation but without the dependence of mass, space and time on velocity. The general postulates that are the bases of the new approach to electrodynamics were stated.
文摘Basic fluid mechanics and stochastic theories are applied to show that the concentration distribution of suspended solid particles in a direction normal to the mean streamlines of a two-dimensional turbulent flow is greatly influenced by the lift force exerted on them in the vicinity of the wall.Analytic solution shows that,when the direction of the mean flow is horizontal,the probability density function p(y,t)for random displacements of the particles will have a maximum value at a point from the wall where the perpendicular component of the lift force precisely balances particle gravity.Interpretation of experimental observations is presented using this theory.
基金Project supported by the National Natural Science Foundation of China(Grant No.12075090)the Key-Area Research and Development Program of Guangdong Province,China(Grant No.2019B030330001)+2 种基金the Science and Technology Program of Guangzhou City(Grant No.2019050001)the Natural Science Foundation of Guangdong Province,China(Grant No.2017A030313029)the Major Basic Research Project of Guangdong Province,China(Grant No.2017KZDXM024)。
文摘We studied the rectified transport of underdamped particles subject to phase lag in an asymmetric periodic structure.When the inertia effect is considered,it is possible to observe reversals of the average velocity with small self-propelled force,whereas particles always move in the positive direction with large self-propelled force.The introduction of phase lag leads particles to follow circular orbits and suppress the polar motion.In addition,this can adjust the direction of particle motion.There exists an optimal value of polar interaction strength at which the rectification is maximal.These results open the way for many application processes,such as spatial sorting of particles mixture and separation based on their physical properties.