Moraine dams usually collapse due to over- topping by the surge wave in the dammed lake, and the surge wave is most likely caused by an earthquake. The seismic water wave (SWW) is a major factor causing the dam to b...Moraine dams usually collapse due to over- topping by the surge wave in the dammed lake, and the surge wave is most likely caused by an earthquake. The seismic water wave (SWW) is a major factor causing the dam to break in the earthquake zone. This paper focused on the SWW by model experiments with a shaking water tank under conditions of various water depths, seismic waves, and peak ground accelerations. Two empirical equations were obtained for estimating maximal wave height for the low and high frequency, respectively. Finally, we present the application of the empirical equations on Midui Glacier Lake in Tibet plateau.展开更多
The formation and evolution of glacier moraine-dammed lakes are closely related to past glacier expansion and retreat. Geomorphic markers such as lacustrine terraces and beach ridges observed in these lakes provide im...The formation and evolution of glacier moraine-dammed lakes are closely related to past glacier expansion and retreat. Geomorphic markers such as lacustrine terraces and beach ridges observed in these lakes provide important evidence for regional paleoenvironment reconstruction. We document the magnitude of paleo-shoreline fluctuations and timings of highstands of lake water by using cosmogenic 10Be surface exposure dating and optically stimulated luminescence(OSL) dating on samples collected from lacustrine sediment and bedrock strath in Lake Khagiin Khar. The lake was initially impounded by glacier moraine at the Global Last Glacial maximum(gLGM;21–19 ka), and the lake reached its maximum paleo-shoreline level of 1840 m at sea level(a.s.l.). At that time, the stored lake water amount was up to seven times greater and the surface area was three times larger than the present values. The paleolake experienced higher shoreline levels at 1832, 1822, and 1817 m a.s.l. and reached the present lake level after 0.4 ka. We interpret that decrease in the paleolake level was caused by spillover. The increase in melt water after the gLGM and the Late Glacial exceeded the storage threshold of the lake, and the paleolake water overflowed across the lowest drainage divides. The lake spilled over across the lowest bedrock ridge at 15.9 ± 0.6 ka, and the outlet was incised since that time at a rate of 3.72 ± 0.15 mm/yr. The initial stream of the Khiidiin Pass River was disturbed by LGM moraine damming and was rerouted into the present course running through moraine after the spillover at 15.9 ± 0.6 ka.展开更多
Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of...Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of all types of glacial lakes, moraine-dammed lakes may be the most dangerous to local residents in mountain regions. Thus, we monitored the dy- namics of 12 moraine-dammed glacial lakes from 1974 to 2014 in the Poiqu River Basin of central west Himalayas, as well as their associated glaciers with a combination of remote sensing, topographic maps and digital elevation models (DEMs). Our results indicate that all monitored moraine-dammed glacial lakes have expanded by 7.46 km2 in total while the glaciers retreated by a total of 15.29 km2 correspondingly. Meteorological analysis indicates a warming and drying trend in the Nyalam region from 1974 to 2014, which accelerated glacier retreat and then augmented the supply of moraine-dammed glacial lakes from glacier melt. Lake volume and water depth changed from 1974 to 2014 which indicates that lakes Kangxico, Galongco, and Youmojanco have a high potential for outburst floods and in urgent need for continuous moni- toring or artificial excavation to release water due to the quick increase in water depths and storage capacities. Lakes Jialongco and Cirenmaco, with outburst floods in 1981 and 2002, have a high potential risk for outburst floods because of rapid lake growth and steep slope gradients surrounding them.展开更多
基金These works were supported by the National Natural Science Foundation of China (Grant Nos. 41571004, 41172321, and 41030742), and the Southwest Jiaotong University Doctor Innovation Fund. We thank Yuncheng Zhang, Yiliang Zhou, Haiqiang Guo, and Hongzhou Ai for their work in fields.
文摘Moraine dams usually collapse due to over- topping by the surge wave in the dammed lake, and the surge wave is most likely caused by an earthquake. The seismic water wave (SWW) is a major factor causing the dam to break in the earthquake zone. This paper focused on the SWW by model experiments with a shaking water tank under conditions of various water depths, seismic waves, and peak ground accelerations. Two empirical equations were obtained for estimating maximal wave height for the low and high frequency, respectively. Finally, we present the application of the empirical equations on Midui Glacier Lake in Tibet plateau.
基金supported by the Ministry of Education of the Republic of Koreathe National Research Foundation of Korea (grant NRF-2018S1A5A2A01031348 awarded to Y.B. Seong)
文摘The formation and evolution of glacier moraine-dammed lakes are closely related to past glacier expansion and retreat. Geomorphic markers such as lacustrine terraces and beach ridges observed in these lakes provide important evidence for regional paleoenvironment reconstruction. We document the magnitude of paleo-shoreline fluctuations and timings of highstands of lake water by using cosmogenic 10Be surface exposure dating and optically stimulated luminescence(OSL) dating on samples collected from lacustrine sediment and bedrock strath in Lake Khagiin Khar. The lake was initially impounded by glacier moraine at the Global Last Glacial maximum(gLGM;21–19 ka), and the lake reached its maximum paleo-shoreline level of 1840 m at sea level(a.s.l.). At that time, the stored lake water amount was up to seven times greater and the surface area was three times larger than the present values. The paleolake experienced higher shoreline levels at 1832, 1822, and 1817 m a.s.l. and reached the present lake level after 0.4 ka. We interpret that decrease in the paleolake level was caused by spillover. The increase in melt water after the gLGM and the Late Glacial exceeded the storage threshold of the lake, and the paleolake water overflowed across the lowest drainage divides. The lake spilled over across the lowest bedrock ridge at 15.9 ± 0.6 ka, and the outlet was incised since that time at a rate of 3.72 ± 0.15 mm/yr. The initial stream of the Khiidiin Pass River was disturbed by LGM moraine damming and was rerouted into the present course running through moraine after the spillover at 15.9 ± 0.6 ka.
基金supported by programs from the Ministry of Science and Technology of China (MOST) (Grant Nos. 2013FY111400 and 2012BAC19B07)the National Natural Science Foundation of China (Grant No. 41190084)The first and second Chinese Glacier Inventory data were provided by an immediate past Project from MOST (Grant No. 2006FY110200)
文摘Glacier retreat is not only a symbol of temperature and precipitation change, but a dominating factor of glacial lake changes in alpine regions, which are of wide concern for high risk of potential outburst floods. Of all types of glacial lakes, moraine-dammed lakes may be the most dangerous to local residents in mountain regions. Thus, we monitored the dy- namics of 12 moraine-dammed glacial lakes from 1974 to 2014 in the Poiqu River Basin of central west Himalayas, as well as their associated glaciers with a combination of remote sensing, topographic maps and digital elevation models (DEMs). Our results indicate that all monitored moraine-dammed glacial lakes have expanded by 7.46 km2 in total while the glaciers retreated by a total of 15.29 km2 correspondingly. Meteorological analysis indicates a warming and drying trend in the Nyalam region from 1974 to 2014, which accelerated glacier retreat and then augmented the supply of moraine-dammed glacial lakes from glacier melt. Lake volume and water depth changed from 1974 to 2014 which indicates that lakes Kangxico, Galongco, and Youmojanco have a high potential for outburst floods and in urgent need for continuous moni- toring or artificial excavation to release water due to the quick increase in water depths and storage capacities. Lakes Jialongco and Cirenmaco, with outburst floods in 1981 and 2002, have a high potential risk for outburst floods because of rapid lake growth and steep slope gradients surrounding them.