There have been continuous efforts to seek novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful ...There have been continuous efforts to seek novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabricate monolayer phosphorene by mechanical cleavage and a subsequent Ar* plasma thinning process. The thickness of phosphorene is unambiguously determined by optical contrast spectra combined with atomic force microscopy (AFM). Raman spectroscopy is used to characterize the pristine and plasma-treated samples. The Raman frequency of the A2g mode stiffens, and the intensity ratio of A2g to Alg modes shows a monotonic discrete increase with the decrease of phosphorene thickness down to a monolayer. All those phenomena can be used to identify the thickness of this novel two-dimensional semiconductor. This work on monolayer phosphorene fabrication and thickness determination will facilitate future research on phosphorene.展开更多
Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent,acetonitrile,using expanded graphite(EG)as the starting material.It is proposed...Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent,acetonitrile,using expanded graphite(EG)as the starting material.It is proposed that the dipole-induced dipole interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene.The facile and effective solvothermal-assisted exfoliation process raises the low yield of graphene reported in previous syntheses to 10 wt%12 wt%.By means of centrifugation at 2000 rpm for 90 min,monolayer and bilayer graphene were separated effectively without the need to add a stabilizer or modifi er.Electron diffraction and Raman spectroscopy indicate that the resulting graphene sheets are high quality products without any signifi cant structural defects.展开更多
A state-of-the-art review on monolayer electroplated and brazed cubic boron nitride(CBN) superabrasive wheels for grinding metallic materials has been provided in this article. The fabrication techniques and mechani...A state-of-the-art review on monolayer electroplated and brazed cubic boron nitride(CBN) superabrasive wheels for grinding metallic materials has been provided in this article. The fabrication techniques and mechanisms of the monolayer CBN wheels are discussed. Grain distribution, wheel dressing, wear behavior, and wheel performance are analyzed in detail. Sample applications of monolayer CBN wheel for grinding steels, titanium alloys, and nickel-based superalloys are also provided. Finally, this article highlights opportunities for further investigation of monolayer CBN grinding wheels.展开更多
In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown...In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.展开更多
Semiconductor lasers,an important subfield of semiconductor photonics,have fundamentally changed many aspects of our lives and enabled many technologies since their creation in the 1960s.As in other semiconductor-base...Semiconductor lasers,an important subfield of semiconductor photonics,have fundamentally changed many aspects of our lives and enabled many technologies since their creation in the 1960s.As in other semiconductor-based fields,such as microelectronics,miniaturization has been a constant theme,with nanolasers being an important frontier of research over the last decade.We review the progress,existing issues,and future prospects of nanolasers,especially in relation to their potential application in chip-scale optical interconnects.One of the important challenges in this application is minimizing the size and energy consumption of nanolasers.We begin with the application background of this challenge and then compare basic features of various semiconductor lasers.We present existing issues with nanolasers and discuss potential solutions to meet the size and energy-efficiency challenge.Our discussions cover a broad range of miniaturized lasers,including plasmonic nanolasers and lasers with two-dimensional monolayer gain materials,with focus on near-infrared wavelengths.展开更多
Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompa...Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.展开更多
The emergence and establishment of new techniques for material fabrication are of fundamental importance in the development of materials science. Thus, we herein report a general synthetic strategy for the preparation...The emergence and establishment of new techniques for material fabrication are of fundamental importance in the development of materials science. Thus, we herein report a general synthetic strategy for the preparation of monolayer graphene. This novel synthetic method is based on the direct solid-state pyrolytic conversion of a sodium carboxylate, such as sodium gluconate or sodium citrate, into monolayer graphene in the presence of Na2CO3. In addition, gram-scale quantities of the graphene product can be readily prepared in several minutes. Analysis using Raman spectroscopy and atomic force microscopy clearly demonstrates that the pyrolytic graphene is composed of a monolayer with an average thickness of - 0.50 nm. Thus, the present pyrolytic conversion can overcome the issue of the low monolayer contents (i.e., 1 wt.%-12 wt.%) obtained using exfoliation methods in addition to the low yields of chemical vapor deposition methods. We expect that this novel technique may be suitable for application in the preparation of monolayer graphene materials for batteries, supercapacitors, catalysts, and sensors.展开更多
Two-dimensional (2D) nanomaterials have recently attracted considerable attention due to their promising applications in next-generation electronics and optoelectronics. In particular, the large-scale synthesis of h...Two-dimensional (2D) nanomaterials have recently attracted considerable attention due to their promising applications in next-generation electronics and optoelectronics. In particular, the large-scale synthesis of high-quality 2D materials is an essential requirement for their practical applications. Herein, we demonstrate the wafer-scale synthesis of highly crystalline and homogeneous monolayer WS2 by an enhanced chemical vapor deposition (CVD) approach, in which precise control of the precursor vapor pressure can be effectively achieved in a multi-temperature zone horizontal furnace. In contrast to conventional synthesis methods, the obtained monolayer WS2 has excellent uniformity both in terms of crystallinity and morphology across the entire substrate wafer grown (e.g., 2 inches in diameter), as corroborated by the detailed characterization. When incorporated in typical rigid photodetectors, the monolayer WS2 leads to a respectable photodetection performance, with a responsivity of 0.52 mA/W, a detectivity of 4.9 × 10^9 Jones, and a fast response speed (〈 560μs). Moreover, once fabricated as flexible photodetectors on polyimide, the monolayer WS2 leads to a responsivity of up to 5 mA/W. Importantly, the photocurrent maintains 89% of its initial value even after 3,000 bending cycles. These results highlight the versatility of the present technique, which allows its applications in larger substrates, as well as the excellent mechanical flexibility and robustness of the CVD-grown, homogenous WS2 monolayers, which can promote the development of advanced flexible optoelectronic devices.展开更多
基金Acknowledgements The authors would like to thank Prof. Wei Ji from Renmin University for his kindness in sharing with us the unpublished results on the electronic structure calculations of black phosphorus, Prof. Pingheng Tan for his guidance on early Raman characterization, and Dr. Shuo Ding on her assistance with obtaining the optical image used in TOC. This work is financially supported by the National Natural Science Foundation of China (Nos. 51222202, 11104026, and 61376104), the National Basic Research Program of China (No. 2014CB932500) and the Program for Innovative Research Teams in Universities of the Ministry of Education of China (No. IRT13037) and the Fundamental Research Funds for the Central Universities (No. 2014XZZX003-07).
文摘There have been continuous efforts to seek novel functional two-dimensional semiconductors with high performance for future applications in nanoelectronics and optoelectronics. In this work, we introduce a successful experimental approach to fabricate monolayer phosphorene by mechanical cleavage and a subsequent Ar* plasma thinning process. The thickness of phosphorene is unambiguously determined by optical contrast spectra combined with atomic force microscopy (AFM). Raman spectroscopy is used to characterize the pristine and plasma-treated samples. The Raman frequency of the A2g mode stiffens, and the intensity ratio of A2g to Alg modes shows a monotonic discrete increase with the decrease of phosphorene thickness down to a monolayer. All those phenomena can be used to identify the thickness of this novel two-dimensional semiconductor. This work on monolayer phosphorene fabrication and thickness determination will facilitate future research on phosphorene.
基金by Beijing New Star Project of Science and Technology(2008B02)the Scientifi c Research Foundation for Returned Scholars from the Ministry of Education of China,the National Basic Research Program(2010CB934600)of China,Ministry of Science and Technology China and Start-up Fund of Distinguished Young Scholars at Peking University.Dr.W Qian acknowledges the postdoctoral fellowship supported by the National Nature Science Foundation of China.
文摘Monolayer and bilayer graphene sheets have been produced by a solvothermal-assisted exfoliation process in a highly polar organic solvent,acetonitrile,using expanded graphite(EG)as the starting material.It is proposed that the dipole-induced dipole interactions between graphene and acetonitrile facilitate the exfoliation and dispersion of graphene.The facile and effective solvothermal-assisted exfoliation process raises the low yield of graphene reported in previous syntheses to 10 wt%12 wt%.By means of centrifugation at 2000 rpm for 90 min,monolayer and bilayer graphene were separated effectively without the need to add a stabilizer or modifi er.Electron diffraction and Raman spectroscopy indicate that the resulting graphene sheets are high quality products without any signifi cant structural defects.
基金financial support for this work by the National Natural Science Foundation of China (Nos. 51235004 and 51375235)the Fundamental Research Funds for the Central Universities (Nos. NE2014103 and NZ2016107)
文摘A state-of-the-art review on monolayer electroplated and brazed cubic boron nitride(CBN) superabrasive wheels for grinding metallic materials has been provided in this article. The fabrication techniques and mechanisms of the monolayer CBN wheels are discussed. Grain distribution, wheel dressing, wear behavior, and wheel performance are analyzed in detail. Sample applications of monolayer CBN wheel for grinding steels, titanium alloys, and nickel-based superalloys are also provided. Finally, this article highlights opportunities for further investigation of monolayer CBN grinding wheels.
基金This work is supported by the Singapore National Research Foundation NRF RF Award No. NRFRF2010- 07, MOE Tier 2 MOE2012-T2-2-049, A'Star SERC PSF grant No. 1321202101, and MOE Tier 1 MOE2013- T1-2-235. W. Huang acknowledges the support of the National Basic Research Program of China (973 Program) (No. 2015CB932200), the National Natural Science Foundation of China (NSFC) (Grant Nos. 21144004, 20974046, 21101095, 21003076, 20774043, 51173081, 50428303, 61136003, and 50428303), the Ministry of Education of China (No. IRT1148), the NSF of Jiangsu Province (Grant Nos. SBK201122680, 11KJB510017, BK2008053, 11KJB510017, BK2009025, 10KJB510013, and BZ2010043), and NUPT (Nos. NY210030 and NY211022). J. R Wang is grateful for the NSFC (No. 11474164), NSF of Jiangsu province (No. BK20131413), and the Jiangsu Specially-Appointed Professor program. Y. L. Wang thanks Luqing Wang, Dr. Xiaolong Zou, and Dr. Alex Kutana for the constructive discussion.
文摘In situ strain photoluminescence (PL) and Raman spectroscopy have been employed to exploit the evolutions of the electronic band structure and lattice vibrational responses of chemical vapor deposition (CVD)-grown monolayer tungsten disulphide (WS2) under uniaxial tensile strain. Observable broadening and appearance of an extra small feature at the longer-wavelength side shoulder of the PL peak occur under 2.5% strain, which could indicate the direct-indirect bandgap transition and is further confirmed by our density-functional-theory calculations. As the strain increases further, the spectral weight of the indirect transition gradually increases. Over the entire strain range, with the increase of the strain, the light emissions corresponding to each optical transition, such as the direct bandgap transition (K-K) and indirect bandgap transition (F-K, ≥2.5%), exhibit a monotonous linear redshift. In addition, the binding energy of the indirect transition is found to be larger than that of the direct transition, and the slight lowering of the trion dissociation energy with increasing strain is observed. The strain was used to modulate not only the electronic band structure but also the lattice vibrations. The softening and splitting of the in-plane E' mode is observed under uniaxial tensile strain, and polarization-dependent Raman spectroscopy confirms the observed zigzag-oriented edge of WS2 grown by CVD in previous studies. These findings enrich our understanding of the strained states of monolayer transition-metal dichalcogenide (TMD) materials and lay a foundation for developing applications exploiting their strain-dependent optical properties, including the strain detection and light-emission modulation of such emerging two-dimensional TMDs.
基金The author acknowledges funding support from the National Natural Science Foundation of China under Key Research Program“New Physics and Control of Light Field”(No.91750206)from Tsinghua University,from the Beijing National Research Center for Information Technology,the Beijing Innovation Center of Future Chips.
文摘Semiconductor lasers,an important subfield of semiconductor photonics,have fundamentally changed many aspects of our lives and enabled many technologies since their creation in the 1960s.As in other semiconductor-based fields,such as microelectronics,miniaturization has been a constant theme,with nanolasers being an important frontier of research over the last decade.We review the progress,existing issues,and future prospects of nanolasers,especially in relation to their potential application in chip-scale optical interconnects.One of the important challenges in this application is minimizing the size and energy consumption of nanolasers.We begin with the application background of this challenge and then compare basic features of various semiconductor lasers.We present existing issues with nanolasers and discuss potential solutions to meet the size and energy-efficiency challenge.Our discussions cover a broad range of miniaturized lasers,including plasmonic nanolasers and lasers with two-dimensional monolayer gain materials,with focus on near-infrared wavelengths.
基金Project(AA18242008)supported by the Guangxi Science&Technology Major Project,ChinaProject(HZXYKFKT201904)supported by the Opening Project of Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization,China。
文摘Calcium carbonate,which is widely employed as a filler added into the polymer matrix,has large numbers of applications owing to the excellent properties such as low cost,non-toxicity,high natural reserves and biocompatibility.Nevertheless,in order to obtain the good filling effect,calcium carbonate needs to be surface modified by organic molecules so as to enhance the dispersion and compatibility within the composites.This review paper systematically introduces the theory,methods,and applications progress of calcium carbonate with surface modification.Additionally,the key factors that affect the properties of the composites as well as the current difficulties and challenges are highlighted.The current research progress and potential application prospects of calcium carbonate in the fields of plastics,rubber,paper,medicine and environmental protection are discussed as well.Generally,this review can provide valuable reference for the modification and comprehensive utilization of calcium carbonate.
文摘The emergence and establishment of new techniques for material fabrication are of fundamental importance in the development of materials science. Thus, we herein report a general synthetic strategy for the preparation of monolayer graphene. This novel synthetic method is based on the direct solid-state pyrolytic conversion of a sodium carboxylate, such as sodium gluconate or sodium citrate, into monolayer graphene in the presence of Na2CO3. In addition, gram-scale quantities of the graphene product can be readily prepared in several minutes. Analysis using Raman spectroscopy and atomic force microscopy clearly demonstrates that the pyrolytic graphene is composed of a monolayer with an average thickness of - 0.50 nm. Thus, the present pyrolytic conversion can overcome the issue of the low monolayer contents (i.e., 1 wt.%-12 wt.%) obtained using exfoliation methods in addition to the low yields of chemical vapor deposition methods. We expect that this novel technique may be suitable for application in the preparation of monolayer graphene materials for batteries, supercapacitors, catalysts, and sensors.
文摘Two-dimensional (2D) nanomaterials have recently attracted considerable attention due to their promising applications in next-generation electronics and optoelectronics. In particular, the large-scale synthesis of high-quality 2D materials is an essential requirement for their practical applications. Herein, we demonstrate the wafer-scale synthesis of highly crystalline and homogeneous monolayer WS2 by an enhanced chemical vapor deposition (CVD) approach, in which precise control of the precursor vapor pressure can be effectively achieved in a multi-temperature zone horizontal furnace. In contrast to conventional synthesis methods, the obtained monolayer WS2 has excellent uniformity both in terms of crystallinity and morphology across the entire substrate wafer grown (e.g., 2 inches in diameter), as corroborated by the detailed characterization. When incorporated in typical rigid photodetectors, the monolayer WS2 leads to a respectable photodetection performance, with a responsivity of 0.52 mA/W, a detectivity of 4.9 × 10^9 Jones, and a fast response speed (〈 560μs). Moreover, once fabricated as flexible photodetectors on polyimide, the monolayer WS2 leads to a responsivity of up to 5 mA/W. Importantly, the photocurrent maintains 89% of its initial value even after 3,000 bending cycles. These results highlight the versatility of the present technique, which allows its applications in larger substrates, as well as the excellent mechanical flexibility and robustness of the CVD-grown, homogenous WS2 monolayers, which can promote the development of advanced flexible optoelectronic devices.