The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute res-piratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first su...The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute res-piratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submit-ted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as re-stricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microar-ray for hybridization. The diagnostic capability of the mi-croarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microar-ray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide mi-croarray, which can improve the positive ratio of the diagno-sis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.展开更多
Altered metabolism has long been recognized as a central hallmark of cancer;however,in the fluorescence imaging field,few studies have been conducted to label tumors by exploiting metabolic differences between cancer ...Altered metabolism has long been recognized as a central hallmark of cancer;however,in the fluorescence imaging field,few studies have been conducted to label tumors by exploiting metabolic differences between cancer cells and normal cells.In this work,we successfully developed a metabolic probe MB-C for specific imaging of glutathione(GSH)dynamic metabolic pathways.GSH was endogenously metabolized to produce SO_(2)via Na_(2)S_(2)O_(3) and thiosulfate sulfurtransferase,equilibrating with sulfites/bisulfites.MB-C was allowed to be activated by GSH along with multi-fluorescence emission increased in red and green channels and further sequence-response metabolites(SO_(2))of GSH in significant fluorescence ratio change of red and green channels.Furthermore,such evident fluorescence ratio changes could be used to distinguish cancer cells from normal cells and identify tumor and normal tissues.Therefore,GSH metabolic imaging was successfully applied to accurately label tumors,which provides a new idea and practical case for the precise visualization of malignant tumors.展开更多
Therapies based on stem cell transplants offer significant potential in the field of regenerative medicine. Monitoring the fate of the transplanted stem cells in a timely manner is considered one of the main limitatio...Therapies based on stem cell transplants offer significant potential in the field of regenerative medicine. Monitoring the fate of the transplanted stem cells in a timely manner is considered one of the main limitations for long-standing success of stem cell transplants. Imaging methods that visualize and track stem cells<i> in vivo</i> non-invasively in real time are helpful towards the development of successful cell transplantation techniques. Novel molecular imaging methods which are non-invasive particularly such as MRI have been of great recent interest. Hence, mouse models which are of clinical relevance have been studied by injecting contrast agents used for labelling cells such as super-paramagnetic iron-oxide (SPIO) nanoparticles for cellular imaging. The MR techniques which can be used to generate positive contrast images have been of much relevance recently for tracking of the labelled cells. Particularly when the off-resonance region in the vicinity of the labeled cells is selectively excited while suppressing the signals from the non-labeled regions by the method of spectral dephasing. Thus, tracking of magnetically labelled cells employing positive contrast<i> in vivo</i> MR imaging methods in a burn mouse model in a non-invasive way has been the scope of this study. The consequences have direct implications for monitoring labeled stem cells at some stage in wound healing. We suggest that our approach can be used in clinical trials in molecular and regenerative medicine.展开更多
文摘目的研究黄精Polygonati Rhizoma居群遗传多样性,为黄精药材资源保护和新品种培育提供依据。方法以4个居群22个种源47份黄精种质资源为材料,选用14条ISSR和11对SRAP分子标记进行多态性检测、遗传多样性比较和聚类分析,揭示黄精种质的遗传多样性及地理分布特征。结果ISSR引物和SRAP引物分别扩增出186和142条清晰带数,其中多态性条带数分别为185和140,多态性比率(percentage of polymorphic bands,PPB)分别为99.46%和98.59%;遗传多样性分析显示,ISSR和SRAP标记下基因分化系数(Gst)分别为0.2799和0.2316,即黄精遗传变异主要发生在种群内,居群间基因流(Nm)分别为1.2864和1.6593,遗传相似系数在0.0533~0.9481和0.0328~0.9677。聚类结果显示,相同黄精药材基原种质聚在一起,ISSR和SRAP标记分别将黄精居群分为5和3大类群,且以ISSR标记的聚类结果更符合实际地域分布。结论黄精种质遗传多样性丰富,ISSR和SRAP标记可适用于黄精亲缘性鉴定,研究结果可为黄精资源的保护和育种提供一定参考。
文摘利用荧光标记法及分子模拟法,研究了氟虫腈与昆虫γ-氨基丁酸(aminobutyric acid,GABA)受体的相互作用。荧光标记试验结果显示,氟虫腈与家蝇脑内GABA受体有较强的相互作用,其最大结合量[RT]值和亲和常数K_d值分别为(21.3±2.5)pmol/mg protein和(109±9)nmol/L。分子模拟结果显示:氟虫腈与果蝇RDL受体间形成3条氢键;两者之间的CDOCKER的相互作用能为–137.93 k J/mol。试验和理论两方面均证实,氟虫腈对昆虫GABA受体的强亲和性是导致氟虫腈对昆虫产生高毒性的重要原因。
文摘The 60mer oligonucleotide microarray was designed and applied to detecting of SARS (severe acute res-piratory syndrome) coronavirus. Thirty 60mer specific oligos were designed to cover the whole genome of the first submit-ted coronavirus strain, according to the sequence of TOR2 (GENEBANK Accession: AY274119). These primers were synthesized and printed into a microarray with 12×12 spots. RNAs were extracted from the throat swab and gargling fluid of SARS patients and reverse-transcripted into the double strand cDNAs. The cDNAs were prepared as re-stricted cDNA fragments by the restriction display (RD) technique and labeled by PCR with the Cy5-universal primer. The labeled samples were then applied to the oligo microar-ray for hybridization. The diagnostic capability of the mi-croarray was evaluated after the washing and scanning steps. The scanning result showed that samples of SARS patients were hybridized with multiple SARS probes on the microar-ray, and there is no signal on the negative and blank controls. These results indicate that the genome of SARS coronavirus can be detected in parallel by the 60mer oligonucleotide mi-croarray, which can improve the positive ratio of the diagno-sis. The oligo microarray can also be used for monitoring the behavior of the virus genes in different stages of the disease status.
基金supported by the National Natural Science Foundation of China(21705102,21775096,and 22074084)the Basic Research Program of Shanxi Province(Free Exploration,20210302123430).
文摘Altered metabolism has long been recognized as a central hallmark of cancer;however,in the fluorescence imaging field,few studies have been conducted to label tumors by exploiting metabolic differences between cancer cells and normal cells.In this work,we successfully developed a metabolic probe MB-C for specific imaging of glutathione(GSH)dynamic metabolic pathways.GSH was endogenously metabolized to produce SO_(2)via Na_(2)S_(2)O_(3) and thiosulfate sulfurtransferase,equilibrating with sulfites/bisulfites.MB-C was allowed to be activated by GSH along with multi-fluorescence emission increased in red and green channels and further sequence-response metabolites(SO_(2))of GSH in significant fluorescence ratio change of red and green channels.Furthermore,such evident fluorescence ratio changes could be used to distinguish cancer cells from normal cells and identify tumor and normal tissues.Therefore,GSH metabolic imaging was successfully applied to accurately label tumors,which provides a new idea and practical case for the precise visualization of malignant tumors.
文摘Therapies based on stem cell transplants offer significant potential in the field of regenerative medicine. Monitoring the fate of the transplanted stem cells in a timely manner is considered one of the main limitations for long-standing success of stem cell transplants. Imaging methods that visualize and track stem cells<i> in vivo</i> non-invasively in real time are helpful towards the development of successful cell transplantation techniques. Novel molecular imaging methods which are non-invasive particularly such as MRI have been of great recent interest. Hence, mouse models which are of clinical relevance have been studied by injecting contrast agents used for labelling cells such as super-paramagnetic iron-oxide (SPIO) nanoparticles for cellular imaging. The MR techniques which can be used to generate positive contrast images have been of much relevance recently for tracking of the labelled cells. Particularly when the off-resonance region in the vicinity of the labeled cells is selectively excited while suppressing the signals from the non-labeled regions by the method of spectral dephasing. Thus, tracking of magnetically labelled cells employing positive contrast<i> in vivo</i> MR imaging methods in a burn mouse model in a non-invasive way has been the scope of this study. The consequences have direct implications for monitoring labeled stem cells at some stage in wound healing. We suggest that our approach can be used in clinical trials in molecular and regenerative medicine.