The pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate ...The pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO2 layers. Here, by growing CuO2 monolayer films on Bi2Sr2CaCu2O8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherence and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. Our results support an s-wave superconductivity in Bi2Sr2CaCu2O8+δ, which, we pro- pose, originates from the modulation-doping resultant twodimensional hole liquid confined in the CuO2 layers.展开更多
The field of two-dimensional(2D)magnets has expanded rapidly during the past several years since the first demonstration of intrinsic 2D magnetism in atomically thin CrI_(3) and Cr_(2)Ge_(2)Te_(6) in 2017.2D transitio...The field of two-dimensional(2D)magnets has expanded rapidly during the past several years since the first demonstration of intrinsic 2D magnetism in atomically thin CrI_(3) and Cr_(2)Ge_(2)Te_(6) in 2017.2D transition metal chalcogenides(TMCs),a class of strongly correlated materials,have exhibited a wide variety of novel electronic and optical properties,and more recently magnetism.Here,we review recent experimental progress achieved in the growth of 2D magnetic TMC materials using chemical vapor deposition and molecular beam epitaxy methods.Outstanding examples include the demonstration of room temperature intrinsic and extrinsic ferromagnetism in monolayer VSe_(2),MnSe_(2),Cr_(3)Te_(4),V-doped WSe_(2),and so on.A brief discussion on the origin of the exotic magnetic properties and emergent phenomena is also presented.Finally,we summarize the remaining challenges and future perspective on the development of 2D magnetic materials for next-generation spintronic devices.展开更多
Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/Si C(0001) by molecular beam epitaxy, which are investigated by scanning ...Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/Si C(0001) by molecular beam epitaxy, which are investigated by scanning tunneling microscopy. The two types of islands distinguished by flat or round tops are revealed, indicating bimodal growth of Fe. The atomic structures on the top surfaces of flat islands are also clearly resolved. Our results may improve the understanding of the mechanisms of metals deposited on graphene and pave the way for future spintronic applications of Fe/graphene systems.展开更多
Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years...Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.展开更多
(Ga,Fe)Sb is a promising magnetic semiconductor(MS)for spintronic applications because its Curie temperature(T_(C))is above 300 K when the Fe concentration is higher than 20%.However,the anisotropy constant Ku of(Ga,F...(Ga,Fe)Sb is a promising magnetic semiconductor(MS)for spintronic applications because its Curie temperature(T_(C))is above 300 K when the Fe concentration is higher than 20%.However,the anisotropy constant Ku of(Ga,Fe)Sb is below 7.6×10^(3)erg/cm^(3)when Fe concentration is lower than 30%,which is one order of magnitude lower than that of(Ga,Mn)As.To address this issue,we grew Ga_(1-x-y)Fe_(x)Ni_(y)Sb films with almost the same x(≈24%)and different y to characterize their magnetic and electrical transport properties.We found that the magnetic anisotropy of Ga_(0.76-y)Fe_(0.24)Ni_(y)Sb can be enhanced by increasing y,in which Ku is negligible at y=1.7%but increases to 3.8×10^(5)erg/cm^(3)at y=6.1%(T_(C)=354 K).In addition,the hole mobility(μ)of Ga_(1-x-y)Fe_(x)Ni_(y)Sb reaches 31.3 cm^(2)/(V∙s)at x=23.7%,y=1.7%(T_(C)=319 K),which is much higher than the mobility of Ga_(1-x)Fe_(x)Sb at x=25.2%(μ=6.2 cm^(2)/(V∙s)).Our results provide useful information for enhancing the magnetic anisotropy and hole mobility of(Ga,Fe)Sb by using Ni co-doping.展开更多
The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases an...The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases and the surface roughness of the samples increases.V-pits and trench defects were not found in the AFM images.p++-GaN/InGaN/n++-GaN TJs were investigated for various In content,InGaN thicknesses and doping concentration in the InGaN insert layer.The InGaN insert layer can promote good interband tunneling in GaN/InGaN/GaN TJ and significantly reduce operating voltage when doping is sufficiently high.The current density increases with increasing In content for the 3 nm InGaN insert layer,which is achieved by reducing the depletion zone width and the height of the potential barrier.At a forward current density of 500 A/cm^(2),the measured voltage was 4.31 V and the differential resistance was measured to be 3.75×10^(−3)Ω·cm^(2)for the device with a 3 nm p++-In_(0.35)Ga_(0.65)N insert layer.When the thickness of the In_(0.35)Ga_(0.65)N layer is closer to the“balanced”thickness,the TJ current density is higher.If the thickness is too high or too low,the width of the depletion zone will increase and the current density will decrease.The undoped InGaN layer has a better performance than n-type doping in the TJ.Polarization-engineered tunnel junctions can enhance the functionality and performance of electronic and optoelectronic devices.展开更多
We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band...We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.展开更多
Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources.A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantu...Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources.A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots.Here,we report the growth of embedded GaAs_(1−x)Sb_(x) quantum dots in GaAs nanowires by molecular-beam epitaxy.It is found that the size of the GaAs_(1−x)Sb_(x) quantum dot can be well-defined by the GaAs nanowire.Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature.All GaAs_(1−x)Sb_(x) quantum dots exhibit a pure zinc-blende phase.In addition,we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs_(1−x)Sb_(x) quantum dots.Different from the traditional growth process of the passivation layer,GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs_(1−x)Sb_(x) quantum dots.The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer.The successful fabrication of embedded high-quality GaAs_(1−x)Sb_(x) quantum dots lays the foundation for the realization of GaAs_(1−x)Sb_(x)-based single photon sources.展开更多
The growth and characterization of single-crystalline thin films of topological insulators(TIs)is an important step towards their possible applications.Using in situ scanning tunneling microscopy(STM)and angle-resolve...The growth and characterization of single-crystalline thin films of topological insulators(TIs)is an important step towards their possible applications.Using in situ scanning tunneling microscopy(STM)and angle-resolved photoemission spectroscopy(ARPES),we show that moderately thick Sb_(2)Te_(3)films grown layer-by-layer by molecular beam epitaxy(MBE)on Si(111)are atomically smooth,single-crystalline,and intrinsically insulating.Furthermore,these films were found to exhibit a robust TI electronic structure with their Fermi energy lying within the energy gap of the bulk that intersects only the Dirac cone of the surface states.Depositing Cs in situ moves the Fermi energy of the Sb_(2)Te_(3)films without changing the electronic band structure,as predicted by theory.We found that the TI behavior is preserved in Sb_(2)Te_(3)films down to five quintuple layers(QLs).展开更多
A 2D heterostructure with proximity coupling of magnetism and topology can provide enthralling prospects for hosting new quantum states and exotic properties that are relevant to next-generation spintronic devices.Her...A 2D heterostructure with proximity coupling of magnetism and topology can provide enthralling prospects for hosting new quantum states and exotic properties that are relevant to next-generation spintronic devices.Here,we synthesize a delicate van der Waals(vdW)heterostructure of CrTe_(2)/Bi_(2)Te_(3) at the atomic scale via molecular beam epitaxy.Low-temperature scanning tunneling microscopy/spectroscopy measurements are utilized to characterize the geometric and electronic properties of the CrTe_(2)/Bi_(2)Te_(3) heterostructure with a compressed vdW gap.Detailed structural analysis reveals complex interfacial structures with diversiform step heights and intriguing moirépatterns.The formation of the interface is ascribed to the embedded characteristics of CrTe_(2) and Bi_(2)Te_(3) by sharing Te atomic layer upon interfacing,showing intercoupled features of electronic structure for CrTe_(2) and Bi_(2)Te_(3).Our study demonstrates a possible approach to construct artificial heterostructures with different types of ordered states,which may be of use for achieving tunable interfacial Dzyaloshinsky–Moriya interactions and tailoring the functional building blocks in low dimensions.展开更多
In this work,metal–semiconductor–metal solar-blind ultraviolet photoconductors were fabricated based on theβ-Ga_(2)O_(3) thin films which were grown on the c-plane sapphire substrates by molecular beam epitaxy.Then...In this work,metal–semiconductor–metal solar-blind ultraviolet photoconductors were fabricated based on theβ-Ga_(2)O_(3) thin films which were grown on the c-plane sapphire substrates by molecular beam epitaxy.Then,the effects ofβ-Ga_(2)O_(3) annealing on both its material character-istics and the device photoconductivity were studied.Theβ-Ga_(2)O_(3) thin films were annealed at 800,900,1000,and 1100°C,respectively.Moreover,the annealing time was fixed at 2 h,and the annealing ambients were oxygen,nitro-gen,and vacuum(4.9×10^(-4 )Pa),respectively.The crys-talline quality and texture of theβ-Ga_(2)O_(3) thin films before and after annealing were investigated by X-ray diffraction(XRD),showing that higher annealing temperature can result in a weaker intensity of(402)diffraction peak and a lower device photoresponsivity.Furthermore,the vacuum-annealed sam-ple exhibits the highest photoresponsivity compared with the oxygen-and nitrogen-annealed samples at the same annealing temperature.In addition,the persistent photoconductivity effect is effectively restrained in the oxygen-annealed sample even with the lowest photoresponsivity.展开更多
In this paper,we propose and analyze high order energy dissipative time-stepping schemes for time-fractional molecular beam epitaxial(MBE)growth model on the nonuniform mesh.More precisely,(2−α)-order,secondorder and...In this paper,we propose and analyze high order energy dissipative time-stepping schemes for time-fractional molecular beam epitaxial(MBE)growth model on the nonuniform mesh.More precisely,(2−α)-order,secondorder and(3−α)-order time-stepping schemes are developed for the timefractional MBE model based on the well known L1,L2-1σ,and L2 formulations in discretization of the time-fractional derivative,which are all proved to be unconditional energy dissipation in the sense of a modified discrete nonlocalenergy on the nonuniform mesh.In order to reduce the computational storage,we apply the sum of exponential technique to approximate the history part of the time-fractional derivative.Moreover,the scalar auxiliary variable(SAV)approach is introduced to deal with the nonlinear potential function and the history part of the fractional derivative.Furthermore,only first order method is used to discretize the introduced SAV equation,which will not affect high order accuracy of the unknown thin film height function by using some proper auxiliary variable functions V(ξ).To our knowledge,it is the first time to unconditionally establish the discrete nonlocal-energy dissipation law for the modified L1-,L2-1σ-,and L2-based high-order schemes on the nonuniform mesh,which is essentially important for such time-fractional MBE models with low regular solutions at initial time.Finally,a series of numerical experiments are carried out to verify the accuracy and efficiency of the proposed schemes.展开更多
This article will briefly describe a Majorana platform made of InAs/GaSb(including InAs/(In)GaSb)semiconductor-superconductor heterostructures.A unique advantage of this platform is that the quantum spin Hall edge sta...This article will briefly describe a Majorana platform made of InAs/GaSb(including InAs/(In)GaSb)semiconductor-superconductor heterostructures.A unique advantage of this platform is that the quantum spin Hall edge state realized in inverted InAs/GaSb is a topologically protected spinless single mode,and can be tuned by front-back dual gates.Similar to a number of other platforms the proximity effect of a conventional s-wave superconductor on the helical edge has been proposed to realize Majorana bound state.We will present an introduction to this platform with a focus on the materials and devices aspects and those points that are particularly illustrative.展开更多
Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs laye...Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.展开更多
基金Acknowledgments The work was financially supported by the National Natural Science Foundation, Ministry of Science and Technology and Ministry of Education of China. The work at Brookhaven National Laboratory was supported by the Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE- SC00112704.
文摘The pairing mechanism of high-temperature superconductivity in cuprates remains the biggest unresolved mystery in condensed matter physics. To solve the problem, one of the most effective approaches is to investigate directly the superconducting CuO2 layers. Here, by growing CuO2 monolayer films on Bi2Sr2CaCu2O8+δ substrates, we identify two distinct and spatially separated energy gaps centered at the Fermi energy, a smaller U-like gap and a larger V-like gap on the films, and study their interactions with alien atoms by low-temperature scanning tunneling microscopy. The newly discovered U-like gap exhibits strong phase coherence and is immune to scattering by K, Cs and Ag atoms, suggesting its nature as a nodeless superconducting gap in the CuO2 layers, whereas the V-like gap agrees with the well-known pseudogap state in the underdoped regime. Our results support an s-wave superconductivity in Bi2Sr2CaCu2O8+δ, which, we pro- pose, originates from the modulation-doping resultant twodimensional hole liquid confined in the CuO2 layers.
基金support from the National Natural Science Foundation of China(project No.:12004278)Andrew T.S.Wee acknowledges the funds NRF of Singapore(grant No.R-144-000-405-281)MOE Tier 2 grant MOE2016-T2-2-110.
文摘The field of two-dimensional(2D)magnets has expanded rapidly during the past several years since the first demonstration of intrinsic 2D magnetism in atomically thin CrI_(3) and Cr_(2)Ge_(2)Te_(6) in 2017.2D transition metal chalcogenides(TMCs),a class of strongly correlated materials,have exhibited a wide variety of novel electronic and optical properties,and more recently magnetism.Here,we review recent experimental progress achieved in the growth of 2D magnetic TMC materials using chemical vapor deposition and molecular beam epitaxy methods.Outstanding examples include the demonstration of room temperature intrinsic and extrinsic ferromagnetism in monolayer VSe_(2),MnSe_(2),Cr_(3)Te_(4),V-doped WSe_(2),and so on.A brief discussion on the origin of the exotic magnetic properties and emergent phenomena is also presented.Finally,we summarize the remaining challenges and future perspective on the development of 2D magnetic materials for next-generation spintronic devices.
基金the Ministry of Science and Technology of China (Grant Nos. 2019YFA0308600 and 2020YFA0309000)the National Natural Science Foundation of China (Grant Nos. 92365302, 92065201, 22325203, 92265105, 12074247, and 12174252)+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000)the Science and Technology Commission of Shanghai Municipality (Grant Nos. 2019SHZDZX01, 19JC1412701 and 20QA1405100) for financial supportfinancial support from the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302500)。
文摘Magnetic metals deposited on graphene hold the key to applications in spintronics. Here, we present the results of Fe islands grown on graphene/Si C(0001) by molecular beam epitaxy, which are investigated by scanning tunneling microscopy. The two types of islands distinguished by flat or round tops are revealed, indicating bimodal growth of Fe. The atomic structures on the top surfaces of flat islands are also clearly resolved. Our results may improve the understanding of the mechanisms of metals deposited on graphene and pave the way for future spintronic applications of Fe/graphene systems.
基金supported by the National Key R&D Program of China(Grant No.2021YFB2206503)National Natural Science Foundation of China(Grant No.62274159)+1 种基金CAS Project for Young Scientists in Basic Research(Grant No.YSBR-056)the“Strategic Priority Research Program”of the Chinese Academy of Sciences(Grant No.XDB43010102).
文摘Ex situ characterization techniques in molecular beam epitaxy(MBE)have inherent limitations,such as being prone to sample contamination and unstable surfaces during sample transfer from the MBE chamber.In recent years,the need for improved accuracy and reliability in measurement has driven the increasing adoption of in situ characterization techniques.These techniques,such as reflection high-energy electron diffraction,scanning tunneling microscopy,and X-ray photoelectron spectroscopy,allow direct observation of film growth processes in real time without exposing the sample to air,hence offering insights into the growth mechanisms of epitaxial films with controlled properties.By combining multiple in situ characterization techniques with MBE,researchers can better understand film growth processes,realizing novel materials with customized properties and extensive applications.This review aims to overview the benefits and achievements of in situ characterization techniques in MBE and their applications for material science research.In addition,through further analysis of these techniques regarding their challenges and potential solutions,particularly highlighting the assistance of machine learning to correlate in situ characterization with other material information,we hope to provide a guideline for future efforts in the development of novel monitoring and control schemes for MBE growth processes with improved material properties.
基金This work is supported by the National Key R&D Program of China(No.2021YFA1202200)the CAS Project for Young Scientists in Basic Research(No.YSBR-030)+1 种基金the National Natural Science Foundation Program of China(No.12174383)H L Wang also acknowledges the support from the Youth Innovation Promotion Association,Chinese Academy of Sciences(No.2021110).
文摘(Ga,Fe)Sb is a promising magnetic semiconductor(MS)for spintronic applications because its Curie temperature(T_(C))is above 300 K when the Fe concentration is higher than 20%.However,the anisotropy constant Ku of(Ga,Fe)Sb is below 7.6×10^(3)erg/cm^(3)when Fe concentration is lower than 30%,which is one order of magnitude lower than that of(Ga,Mn)As.To address this issue,we grew Ga_(1-x-y)Fe_(x)Ni_(y)Sb films with almost the same x(≈24%)and different y to characterize their magnetic and electrical transport properties.We found that the magnetic anisotropy of Ga_(0.76-y)Fe_(0.24)Ni_(y)Sb can be enhanced by increasing y,in which Ku is negligible at y=1.7%but increases to 3.8×10^(5)erg/cm^(3)at y=6.1%(T_(C)=354 K).In addition,the hole mobility(μ)of Ga_(1-x-y)Fe_(x)Ni_(y)Sb reaches 31.3 cm^(2)/(V∙s)at x=23.7%,y=1.7%(T_(C)=319 K),which is much higher than the mobility of Ga_(1-x)Fe_(x)Sb at x=25.2%(μ=6.2 cm^(2)/(V∙s)).Our results provide useful information for enhancing the magnetic anisotropy and hole mobility of(Ga,Fe)Sb by using Ni co-doping.
基金supported by the National Key Research and Development Program of China (2017YFE0131500, 2022YFB2802801)the National Natural Science Foundation of China (61834008, U21A20493)+1 种基金the Key Research and Development Program of Jiangsu Province (BE2020004, BE2021008-1)the Suzhou Key Laboratory of New-type Laser Display Technology (SZS2022007)
文摘The InGaN films and GaN/InGaN/GaN tunnel junctions(TJs)were grown on GaN templates with plasma-assisted molecular beam epitaxy.As the In content increases,the quality of InGaN films grown on GaN templates decreases and the surface roughness of the samples increases.V-pits and trench defects were not found in the AFM images.p++-GaN/InGaN/n++-GaN TJs were investigated for various In content,InGaN thicknesses and doping concentration in the InGaN insert layer.The InGaN insert layer can promote good interband tunneling in GaN/InGaN/GaN TJ and significantly reduce operating voltage when doping is sufficiently high.The current density increases with increasing In content for the 3 nm InGaN insert layer,which is achieved by reducing the depletion zone width and the height of the potential barrier.At a forward current density of 500 A/cm^(2),the measured voltage was 4.31 V and the differential resistance was measured to be 3.75×10^(−3)Ω·cm^(2)for the device with a 3 nm p++-In_(0.35)Ga_(0.65)N insert layer.When the thickness of the In_(0.35)Ga_(0.65)N layer is closer to the“balanced”thickness,the TJ current density is higher.If the thickness is too high or too low,the width of the depletion zone will increase and the current density will decrease.The undoped InGaN layer has a better performance than n-type doping in the TJ.Polarization-engineered tunnel junctions can enhance the functionality and performance of electronic and optoelectronic devices.
文摘We introduce a novel method to create mid-infrared(MIR)thermal emitters using fully epitaxial,metal-free structures.Through the strategic use of epsilon-near-zero(ENZ)thin films in InAs layers,we achieve a narrow-band,wide-angle,and p-polarized thermal emission spectra.This approach,employing molecular beam epitaxy,circumvents the complexities associated with current layered structures and yields temperature-resistant emission wavelengths.Our findings contribute a promising route towards simpler,more efficient MIR optoelectronic devices.
基金supported by the National Natural Science Foundation of China(Grant No.12374459)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB0460000)support from Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant Nos.2017156 and Y2021043).
文摘Semiconductor quantum dots are promising candidates for preparing high-performance single photon sources.A basic requirement for this application is realizing the controlled growth of high-quality semiconductor quantum dots.Here,we report the growth of embedded GaAs_(1−x)Sb_(x) quantum dots in GaAs nanowires by molecular-beam epitaxy.It is found that the size of the GaAs_(1−x)Sb_(x) quantum dot can be well-defined by the GaAs nanowire.Energy dispersive spectroscopy analyses show that the antimony content x can be up to 0.36 by tuning the growth temperature.All GaAs_(1−x)Sb_(x) quantum dots exhibit a pure zinc-blende phase.In addition,we have developed a new technology to grow GaAs passivation layers on the sidewalls of the GaAs_(1−x)Sb_(x) quantum dots.Different from the traditional growth process of the passivation layer,GaAs passivation layers can be grown simultaneously with the growth of the embedded GaAs_(1−x)Sb_(x) quantum dots.The spontaneous GaAs passivation layer shows a pure zinc-blende phase due to the strict epitaxial relationship between the quantum dot and the passivation layer.The successful fabrication of embedded high-quality GaAs_(1−x)Sb_(x) quantum dots lays the foundation for the realization of GaAs_(1−x)Sb_(x)-based single photon sources.
基金The work is supported by the National Natural Science Foundation of China(NSFC)the National Basic Research Program of the Ministry of Science and Technology of China(MOST)Work at Pennsylvania State University is supported by the National Science Foundation(NSF)under Grant No.DMR 0908700.
文摘The growth and characterization of single-crystalline thin films of topological insulators(TIs)is an important step towards their possible applications.Using in situ scanning tunneling microscopy(STM)and angle-resolved photoemission spectroscopy(ARPES),we show that moderately thick Sb_(2)Te_(3)films grown layer-by-layer by molecular beam epitaxy(MBE)on Si(111)are atomically smooth,single-crystalline,and intrinsically insulating.Furthermore,these films were found to exhibit a robust TI electronic structure with their Fermi energy lying within the energy gap of the bulk that intersects only the Dirac cone of the surface states.Depositing Cs in situ moves the Fermi energy of the Sb_(2)Te_(3)films without changing the electronic band structure,as predicted by theory.We found that the TI behavior is preserved in Sb_(2)Te_(3)films down to five quintuple layers(QLs).
基金funded by the National Key Research and Development Program of China(Grant Nos.2022YFA1402400,2018YFA0307000 and 2019YFA0308603)the National Natural Science Foundation of China(Grant Nos.12174131,92265201,11774105,11874161,11934020,12174443 and U20A6002).
文摘A 2D heterostructure with proximity coupling of magnetism and topology can provide enthralling prospects for hosting new quantum states and exotic properties that are relevant to next-generation spintronic devices.Here,we synthesize a delicate van der Waals(vdW)heterostructure of CrTe_(2)/Bi_(2)Te_(3) at the atomic scale via molecular beam epitaxy.Low-temperature scanning tunneling microscopy/spectroscopy measurements are utilized to characterize the geometric and electronic properties of the CrTe_(2)/Bi_(2)Te_(3) heterostructure with a compressed vdW gap.Detailed structural analysis reveals complex interfacial structures with diversiform step heights and intriguing moirépatterns.The formation of the interface is ascribed to the embedded characteristics of CrTe_(2) and Bi_(2)Te_(3) by sharing Te atomic layer upon interfacing,showing intercoupled features of electronic structure for CrTe_(2) and Bi_(2)Te_(3).Our study demonstrates a possible approach to construct artificial heterostructures with different types of ordered states,which may be of use for achieving tunable interfacial Dzyaloshinsky–Moriya interactions and tailoring the functional building blocks in low dimensions.
基金the National Natural Science Foundation of China(No.61223002)the Research Foundation for the Doctoral Program of Higher Education of China(No.2012018530003)。
文摘In this work,metal–semiconductor–metal solar-blind ultraviolet photoconductors were fabricated based on theβ-Ga_(2)O_(3) thin films which were grown on the c-plane sapphire substrates by molecular beam epitaxy.Then,the effects ofβ-Ga_(2)O_(3) annealing on both its material character-istics and the device photoconductivity were studied.Theβ-Ga_(2)O_(3) thin films were annealed at 800,900,1000,and 1100°C,respectively.Moreover,the annealing time was fixed at 2 h,and the annealing ambients were oxygen,nitro-gen,and vacuum(4.9×10^(-4 )Pa),respectively.The crys-talline quality and texture of theβ-Ga_(2)O_(3) thin films before and after annealing were investigated by X-ray diffraction(XRD),showing that higher annealing temperature can result in a weaker intensity of(402)diffraction peak and a lower device photoresponsivity.Furthermore,the vacuum-annealed sam-ple exhibits the highest photoresponsivity compared with the oxygen-and nitrogen-annealed samples at the same annealing temperature.In addition,the persistent photoconductivity effect is effectively restrained in the oxygen-annealed sample even with the lowest photoresponsivity.
基金supported by NSFC grant 12001248,the NSF of Jiangsu Province grant BK20201020the NSF of Universities in Jiangsu Province of China grant 20KJB110013+3 种基金the Hong Kong Polytechnic University grant 1-W00Dsupported by Hong Kong Research Grants Council RFS grant RFS2021-5S03 and GRF grant 15302122,the Hong Kong Polytechnic University grant 1-9BCTCAS AMSS-PolyU Joint Laboratory of Applied Mathematicssupported by the Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science under UIC 2022B1212010006.
文摘In this paper,we propose and analyze high order energy dissipative time-stepping schemes for time-fractional molecular beam epitaxial(MBE)growth model on the nonuniform mesh.More precisely,(2−α)-order,secondorder and(3−α)-order time-stepping schemes are developed for the timefractional MBE model based on the well known L1,L2-1σ,and L2 formulations in discretization of the time-fractional derivative,which are all proved to be unconditional energy dissipation in the sense of a modified discrete nonlocalenergy on the nonuniform mesh.In order to reduce the computational storage,we apply the sum of exponential technique to approximate the history part of the time-fractional derivative.Moreover,the scalar auxiliary variable(SAV)approach is introduced to deal with the nonlinear potential function and the history part of the fractional derivative.Furthermore,only first order method is used to discretize the introduced SAV equation,which will not affect high order accuracy of the unknown thin film height function by using some proper auxiliary variable functions V(ξ).To our knowledge,it is the first time to unconditionally establish the discrete nonlocal-energy dissipation law for the modified L1-,L2-1σ-,and L2-based high-order schemes on the nonuniform mesh,which is essentially important for such time-fractional MBE models with low regular solutions at initial time.Finally,a series of numerical experiments are carried out to verify the accuracy and efficiency of the proposed schemes.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0308400)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB28000000)。
文摘This article will briefly describe a Majorana platform made of InAs/GaSb(including InAs/(In)GaSb)semiconductor-superconductor heterostructures.A unique advantage of this platform is that the quantum spin Hall edge state realized in inverted InAs/GaSb is a topologically protected spinless single mode,and can be tuned by front-back dual gates.Similar to a number of other platforms the proximity effect of a conventional s-wave superconductor on the helical edge has been proposed to realize Majorana bound state.We will present an introduction to this platform with a focus on the materials and devices aspects and those points that are particularly illustrative.
基金supported by the National Natural Science Foundation of China(Nos.12074210,51788104,11790311,and 12141403)the Basic and Applied Basic Research Major Programme of Guangdong Province of China(No.2021B0301030003)Jihua Laboratory(Project No.X210141TL210).
文摘Atomic characterization on tetragonal FeAs layer and engineering FeAs superlattices is highly desirable to get deep insight into the multi-band superconductivity in iron-pnictides.We fabricate the tetragonal FeAs layer by topotactic reaction of FeTe films with arsenic and then obtain KxFe_(2)As_(2)upon potassium intercalation using molecular beam epitaxy.The in-situ low-temperature√2×√2scanning tunneling microscopy/spectroscopy investigations demonstrate characteristic reconstruction of the FeAs layer and stripe pattern of KxFe_(2)As_(2),accompanied by the development of a superconducting-like gap.The ex-situ transport measurement with FeTe capping layers shows a superconducting transition with an onset temperature of 10 K.This work provides a promising way to characterize the FeAs layer directly and explore rich emergent physics with epitaxial superlattice design.
基金supported by the National Natural Science Foundation of China(No.22103023,No.22173040,No.22241301,No.22103032,No.22173042,and No.21973037)the Shenzhen Science and Technology Innovation Committee(No.ZDSYS20200421111001787,No.JCYJ20210324103810029,No.20220815145746004,and No.2021344670)+1 种基金the Guangdong Innovative&Entrepreneurial Research Team Program(No.2019ZT08L455 and No.2019JC01X091)Innovation Program for Quantum Science and Technology(No.2021ZD0303304).