Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hyg...Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.展开更多
A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate ...A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) were observed in the W. sinensis leaves treated by various soil moisture and photosynthetic available radiation (PAR). The fitting soil moisture for maintaining a high level of Pn and WUE was in range of 15.3%-26.5% of volumetric water content (VWC), of which the optimal VWC was 23.3%. Under the condition of fitting soil moisture, the light saturation point of leaves occurred at above 800μmol.m^2.s^-1, whereas under the condition of water deficiency (VWC, 11.9% and 8.2%) or oversaturation (VWC, 26.5%), the light saturation point was below 400μmol.m^-1.s^-1. Moreover, the light response curves suggested that a special point of PAR occurred with the increase in PAR. This special point was considered as the turning point that indicated the functional transition from stomatal limitation to non-stomatal limitation. The turning point was about 600, 1000, 1000 and 400 μmol.m^-2.s^-1, respectively, at VWC of 28.4%, 15.3%, 11.9% and 8.2%. In conclusion, W. sinensis had higher adaptive ability to water stress by regulating itself physiological function.展开更多
The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was mon...The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was monitored, and the response of soil moisture and plant ecology to the groundwater depth and the water use efficiency of the different plant communities was analyzed. The results showed that:(1) Along with the groundwater depth increasing, predawn and midday water potential of the plants, with the exception of Reaumuria soongorica, did not decrease significantly, indicating that when the groundwater depth is less than 3 m, the plant communities in the range of 4 km from the river way did not suffer or slightly suffer from water stress;(2) The distribution of higher soil moisture content within 0–3 m soil layer is suitable with the plants’ root system, as indicated in the communities of coexisting overripe Populus euphratica or Taramrix chinensis, both of which can release excessive water into soil for shallow rooted shrubs or herbaceous plants when there is water shortage;(3) R. soongorica can absorb deep soil moisture through deep roots for their own survival;(4) The community consisting of Sophora alopecuroides, Karelinia caspica, T. chinensis, and overripe P. euphratica has the best species combination for restoring the damaged eco-environment in the lower reaches of Heihe River;(5) The order of plants’ relative leaf water contents is K. caspica > S. alopecuroides > young P. euphratica > overripe P. euphratica > mature P. euphratica = T. chinensis coexisting with other species > single R. soongorica > single T. chinensis and the order of WUE is single T. chinensis > single R. soongorica > T. chinensis living in symbiosis with other species > S. alopecuroides = young P. euphratica > mature P. euphratica > overripe P. euphratica > K. caspica. Therefore, with ample soil moisture, the plant community helps rapid growth展开更多
Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-ba...Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10^-3 cm^2 V-1 s-1(as-deposited) to 1.2 × 10^-2 cm2 V^-1 s^-1(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport);and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.展开更多
Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yiel...Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.展开更多
文摘Major plant species in the Xilin River Basin were grouped into six plant functional groups (PFGs) based on their water ecological groups: xerophytes, mesoxerophytes, xeromesophytes, mesophytes, hygromesophytes and hygrophytes. We surveyed the composition, delta(13)C values and proline concentration of PFGs in eight different plant communities along a soil moisture gradient. Results show that: (1) PFGs occurred variously in eight steppe communities with different soil moisture status. In wetter habitats, hygromesophytes and hygrophytes were more abundant and accounted for the majority of aboveground biomass, whereas xerophytes and mesoxerophytes became more conspicuous in dryer habitats; (2) the numerical order of the mean delta(13)C values of PFGs is as follows: xerophytes (-26.38parts per thousand) = mesoxerophytes (-26.51parts per thousand) > xeromesophytes (-27.02parts per thousand) > mesophytes (-27.56parts per thousand) = hygromesophytes and hygrophytes (-27.80parts per thousand); (3) xerophytes maintained relative higher delta(13)C values and water use efficiency (WUE) in habitats of different water availability, whereas delta(13)C values of xeromesophytes were more sensitive to change in soil water availability; (4) From xerophytes to hygrophytes, their proline content markedly increased. Significantly positive correlations existed between proline and biomass or delta(13)C values of different water ecological groups.
基金This research was supported by National Key Sci-ence and Technology Item in "11th five year" period (No.2006BAD03A1205)Shandong Superior Industrial Item in "Breed-ing and Industrial Exploitation of Superior Liana,Adapting to Afforest-ing Barren Mountain".
文摘A study was conducted to determine the fitting soil moisture for the normal growth of two-year-old W. sinensis (Sims) Sweets by using gas exchange technique. Remarkable threshold values of net photosynthetic rate (Pn), transpiration rate (Tr) and water use efficiency (WUE) were observed in the W. sinensis leaves treated by various soil moisture and photosynthetic available radiation (PAR). The fitting soil moisture for maintaining a high level of Pn and WUE was in range of 15.3%-26.5% of volumetric water content (VWC), of which the optimal VWC was 23.3%. Under the condition of fitting soil moisture, the light saturation point of leaves occurred at above 800μmol.m^2.s^-1, whereas under the condition of water deficiency (VWC, 11.9% and 8.2%) or oversaturation (VWC, 26.5%), the light saturation point was below 400μmol.m^-1.s^-1. Moreover, the light response curves suggested that a special point of PAR occurred with the increase in PAR. This special point was considered as the turning point that indicated the functional transition from stomatal limitation to non-stomatal limitation. The turning point was about 600, 1000, 1000 and 400 μmol.m^-2.s^-1, respectively, at VWC of 28.4%, 15.3%, 11.9% and 8.2%. In conclusion, W. sinensis had higher adaptive ability to water stress by regulating itself physiological function.
基金supported financially by the National Natural Science Foundation of China(Grant No.91025025)National Basic Research Program of China(Grant.No.2010CB951003)
文摘The object of this paper is the different plant communities in the Ejina desert riparian forest. Groundwater depth, soil moisture, plant water potential, relative leaf moisture content and water use efficiency was monitored, and the response of soil moisture and plant ecology to the groundwater depth and the water use efficiency of the different plant communities was analyzed. The results showed that:(1) Along with the groundwater depth increasing, predawn and midday water potential of the plants, with the exception of Reaumuria soongorica, did not decrease significantly, indicating that when the groundwater depth is less than 3 m, the plant communities in the range of 4 km from the river way did not suffer or slightly suffer from water stress;(2) The distribution of higher soil moisture content within 0–3 m soil layer is suitable with the plants’ root system, as indicated in the communities of coexisting overripe Populus euphratica or Taramrix chinensis, both of which can release excessive water into soil for shallow rooted shrubs or herbaceous plants when there is water shortage;(3) R. soongorica can absorb deep soil moisture through deep roots for their own survival;(4) The community consisting of Sophora alopecuroides, Karelinia caspica, T. chinensis, and overripe P. euphratica has the best species combination for restoring the damaged eco-environment in the lower reaches of Heihe River;(5) The order of plants’ relative leaf water contents is K. caspica > S. alopecuroides > young P. euphratica > overripe P. euphratica > mature P. euphratica = T. chinensis coexisting with other species > single R. soongorica > single T. chinensis and the order of WUE is single T. chinensis > single R. soongorica > T. chinensis living in symbiosis with other species > S. alopecuroides = young P. euphratica > mature P. euphratica > overripe P. euphratica > K. caspica. Therefore, with ample soil moisture, the plant community helps rapid growth
基金supported by the National Program for Support of Top-notch Young Professionals and the Australian Government through the Australian Renewable Energy Agency(ARENA)
文摘Carbon-based perovskite solar cells show great potential owing to their low-cost production and superior stability in air, compared to their counterparts using metal contacts. The photovoltaic performance of carbon-based PSCs, however, has been progressing slowly in spite of an impressive efficiency when they were first reported. One of the major obstacles is that the hole transport materials developed for stateof-the-art Au-based PSCs are not suitable for carbon-based PSCs. Here, we develop a low-temperature,solution-processed Poly(3-hexylthiophene-2,5-diyl)(P3 HT)/graphene composite hole transport layer(HTL), that is compatible with paintable carbon-electrodes to produce state-of-the-art perovskite devices. Space-charge-limited-current measurements reveal that the as-prepared P3 HT/graphene composite exhibits outstanding charge mobility and thermal tolerance, with hole mobility increasing from8.3 × 10^-3 cm^2 V-1 s-1(as-deposited) to 1.2 × 10^-2 cm2 V^-1 s^-1(after annealing at 100°C)-two orders of magnitude larger than pure P3 HT. The improved charge transport and extraction provided by the composite HTL provides a significant efficiency improvement compared to cells with a pure P3 HT HTL. As a result, we report carbon-based solar cells with a record efficiency of 17.8%(certified by Newport);and the first perovskite cells to be certified under the stabilized testing protocol. The outstanding device stability is demonstrated by only 3% drop after storage in ambient conditions(humidity: ca. 50%) for 1680 h(nonencapsulated), and retention of ca. 89% of their original output under continuous 1-Sun illumination at room-temperature for 600 h(encapsulated) in a nitrogen environment.
基金research support from the National Key Research and Development Program of China (2016YFD0300110, 2016YFD0300101)the National Basic Research Program of China (2015CB150401)+2 种基金the National Natural Science Foundation of China (31360302)the Science and Technology Program of the Sixth Division of Xinjiang Construction Corps in China (1703)the Agricultural Science and Technology Innovation Program for financial support.
文摘Worldwide, scarce water resources and substantial food demands require efficient water use and high yield.This study investigated whether irrigation frequency can be used to adjust soil moisture to increase grain yield and water use efficiency(WUE) of high-yield maize under conditions of mulching and drip irrigation.A field experiment was conducted using three irrigation intervals in 2016: 6, 9, and 12 days(labeled D6, D9, and D12) and five irrigation intervals in 2017: 3, 6, 9, 12, and 15 days(D3, D6, D9, D12, and D15).In Xinjiang, an optimal irrigation quota is 540 mm for high-yield maize.The D3, D6, D9, D12, and D15 irrigation intervals gave grain yields of 19.7, 19.1–21.0, 18.8–20.0, 18.2–19.2, and 17.2 Mg ha^-1 and a WUE of 2.48, 2.53–2.80, 2.47–2.63, 2.34–2.45, and 2.08 kg m-3, respectively.Treatment D6 led to the highest soil water storage, but evapotranspiration and soil-water evaporation were lower than other treatments.These results show that irrigation interval D6 can help maintain a favorable soil-moisture environment in the upper-60-cm soil layer, reduce soilwater evaporation and evapotranspiration, and produce the highest yield and WUE.In this arid region and in other regions with similar soil and climate conditions, a similar irrigation interval would thus be beneficial for adjusting soil moisture to increase maize yield and WUE under conditions of mulching and drip irrigation.