目的以二氧化硅为核、聚甲基丙烯酸甲酯为刷制备球形高分子刷,考察其作为包装纸防潮涂料主要成膜物质的性能。方法采用"从表面接枝"技术,通过引发剂引发单体聚合生成甲基丙烯酸甲酯球形刷,利用FTIR和TEM对球形高分子刷的结构...目的以二氧化硅为核、聚甲基丙烯酸甲酯为刷制备球形高分子刷,考察其作为包装纸防潮涂料主要成膜物质的性能。方法采用"从表面接枝"技术,通过引发剂引发单体聚合生成甲基丙烯酸甲酯球形刷,利用FTIR和TEM对球形高分子刷的结构及形态进行表征,并考察其作为涂料成膜物质的应用性能。结果合成的球形高分子刷具有良好的耐水性能,且在固含量达到40%以上时仍具有较低的粘度(64 m Pa?s)。结论该球形高分子刷具有高固低粘包装纸防潮涂料的应用价值。展开更多
Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium alumino...Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium aluminosilicate(LAS) powders as fillers. The phase and microstructure of the coatings were analyzed by X-ray diffraction(XRD) analysis and scanning electron microscopy(SEM), respectively. The effect of the coatings on mechanical property and humidity resistance of the porous Si3N4 ceramic was investigated. The experimental results showed that we successfully fabricated the uniform and dense coating which preferably combined with the substrate upon the addition of fillers. The bending strength of the porous Si3N4 ceramic sprayed the coating increased by more than 18%, and the surface hardness increased by 1.7 times. The apparent porosity of the materials reduced by an average of 97.7%, and water absorption was below 0.5%. Therefore, the prepared coating with preferable density had an obviously moisture-proof and enhanced effect on the porous Si3N4 ceramic.展开更多
文摘目的以二氧化硅为核、聚甲基丙烯酸甲酯为刷制备球形高分子刷,考察其作为包装纸防潮涂料主要成膜物质的性能。方法采用"从表面接枝"技术,通过引发剂引发单体聚合生成甲基丙烯酸甲酯球形刷,利用FTIR和TEM对球形高分子刷的结构及形态进行表征,并考察其作为涂料成膜物质的应用性能。结果合成的球形高分子刷具有良好的耐水性能,且在固含量达到40%以上时仍具有较低的粘度(64 m Pa?s)。结论该球形高分子刷具有高固低粘包装纸防潮涂料的应用价值。
文摘Inorganic coating was fabricated on the surface of the porous Si3N4 ceramic by polymer derived(PD) and spraying technology, via using vinyl-polysilazane(PSN-1) as a preceramic polymer and Si3N4 and lithium aluminosilicate(LAS) powders as fillers. The phase and microstructure of the coatings were analyzed by X-ray diffraction(XRD) analysis and scanning electron microscopy(SEM), respectively. The effect of the coatings on mechanical property and humidity resistance of the porous Si3N4 ceramic was investigated. The experimental results showed that we successfully fabricated the uniform and dense coating which preferably combined with the substrate upon the addition of fillers. The bending strength of the porous Si3N4 ceramic sprayed the coating increased by more than 18%, and the surface hardness increased by 1.7 times. The apparent porosity of the materials reduced by an average of 97.7%, and water absorption was below 0.5%. Therefore, the prepared coating with preferable density had an obviously moisture-proof and enhanced effect on the porous Si3N4 ceramic.