期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
分块PCA鉴别特征抽取能力的分析研究 被引量:17
1
作者 陈伏兵 谢永华 +1 位作者 严云洋 杨静宇 《计算机科学》 CSCD 北大核心 2006年第3期155-159,共5页
基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是... 基于主成分分析(Principal Component Analysis,PCA),本文提出了分块 PCA 人脸识别方法。分块 PCA 从模式的原始数字图像出发,先对图像进行分块,对分块得到的子图像矩阵采用 PCA 方法进行特征抽取,从而实现模式的分类。新方法的特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类。在 Yale 人脸数据库上测试了该方法的鉴别能力。实验的结果表明,分块 PCA 在识别性能上优于通常的 PCA 方法,也优于基于 Fisher 鉴别准则的鉴别分析方法:Fisherfaces 方法、F-S 方法、组合鉴别方法,识别率可以达到100%。 展开更多
关键词 线性鉴别分析 主成分分析 特征抽取 分块主成分分析 人脸识别
下载PDF
人脸识别中PCA方法的推广 被引量:9
2
作者 陈伏兵 陈秀宏 +1 位作者 王文胜 杨静宇 《计算机工程与应用》 CSCD 北大核心 2005年第34期34-38,共5页
主成分分析(PrincipalComponentAnalysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,该文提出了分块PCA的人脸识别方法。分块PCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵... 主成分分析(PrincipalComponentAnalysis,PCA)是公认的特征抽取的最为重要的工具之一,目前仍然被广泛地应用在人脸等图像识别领域。基于PCA,该文提出了分块PCA的人脸识别方法。分块PCA方法先对图像矩阵进行分块,对分块得到的子图像矩阵利用PCA进行鉴别分析。其特点是能有效地抽取图像的局部特征,对人脸表情和光照条件变化较大的图像表现尤为突出。与PCA方法相比,由于使用子图像矩阵,分块PCA可以避免使用奇异值分解理论,过程简便。此外,PCA是分块PCA的特殊情况。在Yale和NUST603人脸库上的试验结果表明,所提出的方法在识别性能上明显优于经典的PCA方法,识别率可以分别提高6.7和4个百分点。 展开更多
关键词 主成分分析 特征抽取 分块pca 特征矩阵 人脸识别
下载PDF
基于分块PCA的人脸识别方法 被引量:10
3
作者 陈伏兵 高秀梅 +1 位作者 张生亮 杨静宇 《小型微型计算机系统》 CSCD 北大核心 2006年第10期1943-1947,共5页
本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisher-faces”方法,... 本文提出了一种称为M2PCA+FDA的新的人脸识别方法.新方法从模式的原始数字图像出发,先对样本图像进行分块,对分块得到的子图像矩阵采用PCA进行特征抽取,从而得到能代替原始模式的低维的新模式,然后,对新模式施行“Fisher-faces”方法,实现模式的分类.其特点是能有效地抽取图像的局部特征,正是这些特征使此类模式区别于彼类.在ORL和NUST603两个人脸数据库上对M2PCA+FDA方法进行了测试,实验的结果表明,本文提出的方法在识别性能上优于“Fisher-faces”方法和PCA方法. 展开更多
关键词 线性鉴别分析 主成分分析 特征抽取 分块pca 人脸识别
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部