The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann cond...The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.展开更多
In this study, we constructed and analysed a mathematical model of COVID-19 in order to comprehend the transmission dynamics of the disease. The reproduction number (R<sub>C</sub>) was calculated via the n...In this study, we constructed and analysed a mathematical model of COVID-19 in order to comprehend the transmission dynamics of the disease. The reproduction number (R<sub>C</sub>) was calculated via the next generation matrix method. We also used the Lyaponuv method to show the global stability of both the disease free and endemic equilibrium points. The results showed that the disease-free equilibrium point is globally asymptotically stable if R<sub>C</sub> R<sub>C</sub> > 1. We further used the Adomian decomposition method and the modified Adomian decomposition method to obtain the solutions of the model. Numerical analysis of the model was done using Sagemath 9.0 software.展开更多
In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary condit...In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.展开更多
In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the proble...In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness of the each modified is verified by several examples.展开更多
New modified Adomian decomposition method is proposed for the solution of the generalized fifth-order Korteweg-de Vries (GFKdV) equation. The numerical solutions are compared with the standard Adomian decomposition me...New modified Adomian decomposition method is proposed for the solution of the generalized fifth-order Korteweg-de Vries (GFKdV) equation. The numerical solutions are compared with the standard Adomian decomposition method and the exact solutions. The results are demonstrated which confirm the efficiency and applicability of the method.展开更多
A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main ob...A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.展开更多
For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported...For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported. This model contains a non-linear mass balance equation which is related to rate expression. This paper presents an approximate analytical method (Modified Adomian decomposition method) to solve the non-linear differential equations for chemical kinetics with diffusion effects. A simple and closed form of expressions pertaining to substrate concentration and utilization factor is presented for all value of diffusion parameters. These analytical results are compared with numerical results and found to be in good agreement.展开更多
In this paper, we apply the modified Adomian Decomposition Method to get the numerical solutions of Quadratic integral equations. The appearance of noise terms in Decomposition Method was investigated. The method was ...In this paper, we apply the modified Adomian Decomposition Method to get the numerical solutions of Quadratic integral equations. The appearance of noise terms in Decomposition Method was investigated. The method was described along with several examples.展开更多
This paper presents non-Darcy mixed convective flow of an incompressible and viscous fluid in a differentially heated vertical channel filled with a porous material in the presence of a temperature dependent source/si...This paper presents non-Darcy mixed convective flow of an incompressible and viscous fluid in a differentially heated vertical channel filled with a porous material in the presence of a temperature dependent source/sink. The analytical solution of fourth order non-linear ordinary differential equation for temperature field, which is formed by eliminating velocity field from system of governing equations in non-dimensional form, is obtained by using new modified Adomian decomposition method (NMADM) in terms of various parameters. In order to illustrate the interactive influences of governing parameters on the temperature and velocity fields, a numerical study of the analytical solution is performed with respect to three categories of transport processes i) when forced convection is dominated, ii) when forced and natural convection are equal and iii) when natural convection is dominated. Analysis of all categories has revealed that the temperature and velocity profiles are increasing function of modified Darcy number while decreasing function of Forchheimer number.展开更多
文摘The Modified Adomian Decomposition Method (MADM) is presented. A number of problems are solved to show the efficiency of the method. Further, a new solution scheme for solving boundary value problems with Neumann conditions is proposed. The scheme is based on the modified Adomian decomposition method and the inverse linear operator theorem. Several differential equations with Neumann boundary conditions are solved to demonstrate the high accuracy and efficiency of the proposed scheme.
文摘In this study, we constructed and analysed a mathematical model of COVID-19 in order to comprehend the transmission dynamics of the disease. The reproduction number (R<sub>C</sub>) was calculated via the next generation matrix method. We also used the Lyaponuv method to show the global stability of both the disease free and endemic equilibrium points. The results showed that the disease-free equilibrium point is globally asymptotically stable if R<sub>C</sub> R<sub>C</sub> > 1. We further used the Adomian decomposition method and the modified Adomian decomposition method to obtain the solutions of the model. Numerical analysis of the model was done using Sagemath 9.0 software.
文摘In this paper, we extend the reliable modification of the Adomian Decom-position Method coupled to the Lesnic’s approach to solve boundary value problems and initial boundary value problems with mixed boundary conditions for linear and nonlinear partial differential equations. The method is applied to different forms of heat and wave equations as illustrative examples to exhibit the effectiveness of the method. The method provides the solution in a rapidly convergent series with components that can be computed iteratively. The numerical results for the illustrative examples obtained show remarkable agreement with the exact solutions. We also provide some graphical representations for clear-cut comparisons between the solutions using Maple software.
文摘In this paper, some modifications of Adomian decomposition method are presented for solving initial value problems in ordinary differential equations. Also, the restarted and two-step methods are applied to the problem. The effectiveness of the each modified is verified by several examples.
文摘New modified Adomian decomposition method is proposed for the solution of the generalized fifth-order Korteweg-de Vries (GFKdV) equation. The numerical solutions are compared with the standard Adomian decomposition method and the exact solutions. The results are demonstrated which confirm the efficiency and applicability of the method.
文摘A mathematical model for the fluidized bed biofilm reactor (FBBR) is discussed. An approximate analytical solution of concentration of phenol is obtained using modified Adomian decomposition method (MADM). The main objective is to propose an analytical method of solution, which do not require small parameters and avoid linearization and physically unrealistic assumptions. Theoretical results obtained can be used to predict the biofilm density of a single bioparticle. Satisfactory agreement is obtained in the comparison of approximate analytical solution and numerical simulation.
文摘For the first time a mathematical modelling of porous catalyst particles subject to both internal mass concentration gradients as well as temperature gradients, in endothermic or exothermic reactions has been reported. This model contains a non-linear mass balance equation which is related to rate expression. This paper presents an approximate analytical method (Modified Adomian decomposition method) to solve the non-linear differential equations for chemical kinetics with diffusion effects. A simple and closed form of expressions pertaining to substrate concentration and utilization factor is presented for all value of diffusion parameters. These analytical results are compared with numerical results and found to be in good agreement.
文摘In this paper, we apply the modified Adomian Decomposition Method to get the numerical solutions of Quadratic integral equations. The appearance of noise terms in Decomposition Method was investigated. The method was described along with several examples.
文摘This paper presents non-Darcy mixed convective flow of an incompressible and viscous fluid in a differentially heated vertical channel filled with a porous material in the presence of a temperature dependent source/sink. The analytical solution of fourth order non-linear ordinary differential equation for temperature field, which is formed by eliminating velocity field from system of governing equations in non-dimensional form, is obtained by using new modified Adomian decomposition method (NMADM) in terms of various parameters. In order to illustrate the interactive influences of governing parameters on the temperature and velocity fields, a numerical study of the analytical solution is performed with respect to three categories of transport processes i) when forced convection is dominated, ii) when forced and natural convection are equal and iii) when natural convection is dominated. Analysis of all categories has revealed that the temperature and velocity profiles are increasing function of modified Darcy number while decreasing function of Forchheimer number.