双参数弹性地基上四边自由矩形板的弯曲与振动一直是学术界和工程界共同关注的问题,但至今没有得到满意的解决。求解该问题的困难,一方面是由于地基模型的复杂性,另一方面源于矩形板的四边自由边界条件。实际工程中的板不可避免地遇到...双参数弹性地基上四边自由矩形板的弯曲与振动一直是学术界和工程界共同关注的问题,但至今没有得到满意的解决。求解该问题的困难,一方面是由于地基模型的复杂性,另一方面源于矩形板的四边自由边界条件。实际工程中的板不可避免地遇到非均匀的地基以及受到预加面内机械荷载和预加温度场的作用,在理论计算分析中,考虑这三方面因素的影响对工程实际会有很大的指导意义。本文基于Re issner-M ind lin一阶剪切变形板理论,讨论在预加面内机械荷载和预加温度场作用下,非均匀双参数地基上四边自由中厚矩形板的弯曲与横向振动问题。展开更多
In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integr...In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.展开更多
文摘双参数弹性地基上四边自由矩形板的弯曲与振动一直是学术界和工程界共同关注的问题,但至今没有得到满意的解决。求解该问题的困难,一方面是由于地基模型的复杂性,另一方面源于矩形板的四边自由边界条件。实际工程中的板不可避免地遇到非均匀的地基以及受到预加面内机械荷载和预加温度场的作用,在理论计算分析中,考虑这三方面因素的影响对工程实际会有很大的指导意义。本文基于Re issner-M ind lin一阶剪切变形板理论,讨论在预加面内机械荷载和预加温度场作用下,非均匀双参数地基上四边自由中厚矩形板的弯曲与横向振动问题。
文摘In this paper a stochastic boundary element method (SEEM) is developed to analyze moderately thick plates with random material parameters and random thickness. Based on the Taylor series expansion, the boundary integration equations concerning the mean and deviation of the generalized displacements are derived, respectively. It is found that the randomness of material parameters is equivalent to a random load, so the mean and covariance matrices of unknown generalized boundary displacements and tractions can be obtained. Furthermore, the mean and covariance of generalized displacements and forces at internal points can also be obtained. A numerical example has been worked out with the method proposed and necessary analysis is made for the results.