The demanding objectives for the future sixth generation(6G)of wireless communication networks have spurred recent research efforts on novel materials and radio-frequency front-end architectures for wireless connectiv...The demanding objectives for the future sixth generation(6G)of wireless communication networks have spurred recent research efforts on novel materials and radio-frequency front-end architectures for wireless connectivity,as well as revolutionary communication and computing paradigms.Among the pioneering candidate technologies for 6G belong the reconfigurable intelligent surfaces(RISs),which are artificial planar structures with integrated electronic circuits that can be programmed to manipulate the incoming electromagnetic field in a wide variety of functionalities.Incorporating RISs in wireless networks have been recently advocated as a revolutionary means to transform any wireless signal propagation environment to a dynamically programmable one,intended for various networking objectives,such as coverage extension and capacity boosting,spatiotemporal focusing with benefits in energy efficiency and secrecy,and low electromagnetic field exposure.Motivated by the recent increasing interests in the field of RISs and the consequent pioneering concept of the RIS-enabled smart wireless environments,in this paper,we overview and taxonomize the latest advances in RIS hardware architectures as well as the most recent developments in the modeling of RIS unit elements and RIS-empowered wireless signal propagation.We also present a thorough overview of the channel estimation approaches for RIS-empowered communications systems,which constitute a prerequisite step for the optimized incorporation of RISs in future wireless networks.Finally,we discuss the relevance of the RIS technology in the latest wireless communication standards,and highlight the current and future standardization activities for the RIS technology and the consequent RIS-empowered wireless networking approaches.展开更多
Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell ra...Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.展开更多
信道建模是设计无线通信系统的基础,为设计智慧交通系统,必须对车联网(vehicle to everything,V2X)信道进行深入研究.文中首先总结了V2X标准化信道的特点,讨论了天线设置、非平稳特性以及毫米波对V2X信道的影响;然后对车与车(vehicle to...信道建模是设计无线通信系统的基础,为设计智慧交通系统,必须对车联网(vehicle to everything,V2X)信道进行深入研究.文中首先总结了V2X标准化信道的特点,讨论了天线设置、非平稳特性以及毫米波对V2X信道的影响;然后对车与车(vehicle to vehicle,V2V)信道参数进行了描述,并分析了V2V信道三种建模方式的优缺点;最后提出将来需要做的工作.展开更多
Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of f...Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of freedom at THz frequency band.This makes empirical or stochastic modeling approaches relying on measurements no longer stand.In order to break through the bottleneck of scarce fulldimensional channel sounding measurements,this paper presents a novel paradigm for THz channel modeling towards 6G.With the core of high-performance ray tracing(RT),the presented paradigm requires merely quite limited channel sounding to calibrate the geometry and material electromagnetic(EM)properties of the three-dimensional(3D)environment model in the target scenarios.Then,through extensive RT simulations,the parameters extracted from RT simulations can be fed into either ray-based novel stochastic channel models or cluster-based standard channel model families.Verified by RT simulations,these models can generate realistic channels that are valuable for the design and evaluation of THz systems.Representing two ends of 6G THz use cases from microscopy to macroscopy,case studies are made for close-proximity communications,wireless connections on a desktop,and smart rail mobility,respectively.Last but not least,new concerns on channel modeling resulting from distinguishing features of THz wave are discussed regarding propagation,antenna array,and device aspects,respectively.展开更多
Wireless channel modeling has always been one of the most fundamental highlights of the wireless communication research.The performance of new advanced models and technologies heavily depends on the accuracy of the wi...Wireless channel modeling has always been one of the most fundamental highlights of the wireless communication research.The performance of new advanced models and technologies heavily depends on the accuracy of the wireless CSI(Channel State Information).This study examined the randomness of the wireless channel parameters based on the characteristics of the radio propagation environment.The diversity of the statistical properties of wireless channel parameters inspired us to introduce the concept of the tomographic channel model.With this model,the static part of the CSI can be extracted from the huge amount of existing CSI data of previous measurements,which can be de ned as the wireless channel feature.In the proposed scheme for obtaining CSI with the tomographic channel model,the GMM(Gaussian Mixture Model)is applied to acquire the distribution of the wireless channel parameters,and the CNN(Convolutional Neural Network)is applied to automatically distinguish di erent wireless channels.The wireless channel feature information can be stored oine to guide the design of pilot symbols and save pilot resources.The numerical results based on actual measurements demonstrated the clear diversity of the statistical properties of wireless channel parameters and that the proposed scheme can extract the wireless channel feature automatically with fewer pilot resources.Thus,computing and storage resources can be exchanged for the nite and precious spectrum resource.展开更多
基金supported by the EU H2020 Industrial Leadership Project(No.101017011)the Scientific and Technological Research Council of Turkey(TUBITAK)(No.120E401).
文摘The demanding objectives for the future sixth generation(6G)of wireless communication networks have spurred recent research efforts on novel materials and radio-frequency front-end architectures for wireless connectivity,as well as revolutionary communication and computing paradigms.Among the pioneering candidate technologies for 6G belong the reconfigurable intelligent surfaces(RISs),which are artificial planar structures with integrated electronic circuits that can be programmed to manipulate the incoming electromagnetic field in a wide variety of functionalities.Incorporating RISs in wireless networks have been recently advocated as a revolutionary means to transform any wireless signal propagation environment to a dynamically programmable one,intended for various networking objectives,such as coverage extension and capacity boosting,spatiotemporal focusing with benefits in energy efficiency and secrecy,and low electromagnetic field exposure.Motivated by the recent increasing interests in the field of RISs and the consequent pioneering concept of the RIS-enabled smart wireless environments,in this paper,we overview and taxonomize the latest advances in RIS hardware architectures as well as the most recent developments in the modeling of RIS unit elements and RIS-empowered wireless signal propagation.We also present a thorough overview of the channel estimation approaches for RIS-empowered communications systems,which constitute a prerequisite step for the optimized incorporation of RISs in future wireless networks.Finally,we discuss the relevance of the RIS technology in the latest wireless communication standards,and highlight the current and future standardization activities for the RIS technology and the consequent RIS-empowered wireless networking approaches.
基金supported in part by the National Natural Science Foundation of China under Grant No.61671145the Key R&D Program of Jiangsu Province of China under Grant BE2018121
文摘Millimeter-wave(mm Wave) communications will be used in fifth-generation(5G) mobile communication systems, but they experience severe path loss and have high sensitivity to physical objects, leading to smaller cell radii and complicated network architectures. A coverage extension scheme using large-scale antenna arrays(LSAAs) has been suggested and theoretically proven to be cost-efficient in combination with ultradense small cell networks. To analyze and optimize the LSAA-based network deployments, a comprehensive survey of recent advances in statistical mmWave channel modeling is first presented in terms of channel parameter estimation, large-scale path loss models, and small-scale cluster models. Next, the measurement and modeling results at two 5G candidate mmWave bands(e.g., 28 GHz and 39 GHz) are reviewed and compared in several outdoor scenarios of interest, where the propagation characteristics make crucial contributions to wireless network designs. Finally, the coverage behaviors of systems employing a large number of antenna arrays are discussed, as well as some implications on future mmWave cellular network designs.
文摘信道建模是设计无线通信系统的基础,为设计智慧交通系统,必须对车联网(vehicle to everything,V2X)信道进行深入研究.文中首先总结了V2X标准化信道的特点,讨论了天线设置、非平稳特性以及毫米波对V2X信道的影响;然后对车与车(vehicle to vehicle,V2V)信道参数进行了描述,并分析了V2V信道三种建模方式的优缺点;最后提出将来需要做的工作.
基金supported by the Fundamental Research Funds for the Central Universities 2020JBZD005NSFC under Grant(61771036,61901029,U1834210,and 61725101)+4 种基金the State Key Laboratory of Rail Traffic Control and Safety(Contract No.RCS2020ZZ005)Beijing Jiaotong Universitythe ZTE CorporationState Key Laboratory of Mobile Network and Mobile Multimedia TechnologyBeijing Natural Science Foundation under Grant L201023。
文摘Terahertz(THz)communications are envisioned as a key technology for the sixth-generation wireless communication system(6G).However,it is not practical to perform large-scale channel measurements with high degrees of freedom at THz frequency band.This makes empirical or stochastic modeling approaches relying on measurements no longer stand.In order to break through the bottleneck of scarce fulldimensional channel sounding measurements,this paper presents a novel paradigm for THz channel modeling towards 6G.With the core of high-performance ray tracing(RT),the presented paradigm requires merely quite limited channel sounding to calibrate the geometry and material electromagnetic(EM)properties of the three-dimensional(3D)environment model in the target scenarios.Then,through extensive RT simulations,the parameters extracted from RT simulations can be fed into either ray-based novel stochastic channel models or cluster-based standard channel model families.Verified by RT simulations,these models can generate realistic channels that are valuable for the design and evaluation of THz systems.Representing two ends of 6G THz use cases from microscopy to macroscopy,case studies are made for close-proximity communications,wireless connections on a desktop,and smart rail mobility,respectively.Last but not least,new concerns on channel modeling resulting from distinguishing features of THz wave are discussed regarding propagation,antenna array,and device aspects,respectively.
基金This work is supported by the National Natural Science Foundation of China(No.61631013)National Key Basic Research Program of China(973 Program)(No.2013CB329002)+1 种基金National Major Project(No.2014ZX03003002-002)Program for New Century Excellent Talents in University(No.NCET-13-0321).
文摘Wireless channel modeling has always been one of the most fundamental highlights of the wireless communication research.The performance of new advanced models and technologies heavily depends on the accuracy of the wireless CSI(Channel State Information).This study examined the randomness of the wireless channel parameters based on the characteristics of the radio propagation environment.The diversity of the statistical properties of wireless channel parameters inspired us to introduce the concept of the tomographic channel model.With this model,the static part of the CSI can be extracted from the huge amount of existing CSI data of previous measurements,which can be de ned as the wireless channel feature.In the proposed scheme for obtaining CSI with the tomographic channel model,the GMM(Gaussian Mixture Model)is applied to acquire the distribution of the wireless channel parameters,and the CNN(Convolutional Neural Network)is applied to automatically distinguish di erent wireless channels.The wireless channel feature information can be stored oine to guide the design of pilot symbols and save pilot resources.The numerical results based on actual measurements demonstrated the clear diversity of the statistical properties of wireless channel parameters and that the proposed scheme can extract the wireless channel feature automatically with fewer pilot resources.Thus,computing and storage resources can be exchanged for the nite and precious spectrum resource.