We present the solid model edit distance(SMED),a powerful and flexible paradigm for exploiting shape similarities amongst CAD models.It is designed to measure the magnitude of distortions between two CAD models in bou...We present the solid model edit distance(SMED),a powerful and flexible paradigm for exploiting shape similarities amongst CAD models.It is designed to measure the magnitude of distortions between two CAD models in boundary representation(B-rep).We give the formal definition by analogy with graph edit distance,one of the most popular graph matching methods.To avoid the expensive computational cost potentially caused by exact computation,an approximate procedure based on the alignment of local structure sets is provided in addition.In order to verify the flexibility,we make intensive investigations on three typical applications in manufacturing industry,and describe how our method can be adapted to meet the various requirements.Furthermore,a multilevel method is proposed to make further improvements of the presented algorithm on both effectiveness and efficiency,in which the models are hierarchically segmented into the configurations of features.Experiment results show that SMED serves as a reasonable measurement of shape similarity for CAD models,and the proposed approach provides remarkable performance on a real-world CAD model database.展开更多
基金Supported by National Science Foundation of China(61373071)
文摘We present the solid model edit distance(SMED),a powerful and flexible paradigm for exploiting shape similarities amongst CAD models.It is designed to measure the magnitude of distortions between two CAD models in boundary representation(B-rep).We give the formal definition by analogy with graph edit distance,one of the most popular graph matching methods.To avoid the expensive computational cost potentially caused by exact computation,an approximate procedure based on the alignment of local structure sets is provided in addition.In order to verify the flexibility,we make intensive investigations on three typical applications in manufacturing industry,and describe how our method can be adapted to meet the various requirements.Furthermore,a multilevel method is proposed to make further improvements of the presented algorithm on both effectiveness and efficiency,in which the models are hierarchically segmented into the configurations of features.Experiment results show that SMED serves as a reasonable measurement of shape similarity for CAD models,and the proposed approach provides remarkable performance on a real-world CAD model database.