Field-based phenotyping(FBP)of crop root systemarchitecture(RSA)provides away to quantify the root growth and distribution in fieldwith a smaller scale.Studies on a better understanding of the interrelations between f...Field-based phenotyping(FBP)of crop root systemarchitecture(RSA)provides away to quantify the root growth and distribution in fieldwith a smaller scale.Studies on a better understanding of the interrelations between field crop root physiological traits,root developmental phases and environmental changes are hindered due to deficiency of in situ root system architecture testing and quantitative methods for field crop.The present study aimed to propose a protocol for field-based wheat root system architecture with technical details of key operational procedures.Phenotyping of RSA traits from root spatial coordinate data acquisition and visualization software presented scaled illustrations of wheat RSA dynamics and root developmental phases which also revealed the root topological heterogeneities,eitherwithin a plant oramong individuals.Percentage of horizontal and vertical soil coverage by root showed that root foraging capability along soil depth was better than within the horizontal dimension.In brief,our data indicated that FBP ofwheat RSA could be achieved using the protocol of datadriven model-assisted phenotyping procedure.The proposed protocol was demonstrated useful for FBP of RSAs.It was proved effective to illustrate the topological structures of the wheat root system and to quantify RSAderived parameters,this could be a useful tool for characterizing and analyzing the structural distortion,heterogeneous distribution and the soil space exploration characteristics of wheat root.展开更多
基金Financial support from the China Postdoctoral Science Foundation(2018M632314)the State Key Program of China(2016YFD0300900)were acknowledged.
文摘Field-based phenotyping(FBP)of crop root systemarchitecture(RSA)provides away to quantify the root growth and distribution in fieldwith a smaller scale.Studies on a better understanding of the interrelations between field crop root physiological traits,root developmental phases and environmental changes are hindered due to deficiency of in situ root system architecture testing and quantitative methods for field crop.The present study aimed to propose a protocol for field-based wheat root system architecture with technical details of key operational procedures.Phenotyping of RSA traits from root spatial coordinate data acquisition and visualization software presented scaled illustrations of wheat RSA dynamics and root developmental phases which also revealed the root topological heterogeneities,eitherwithin a plant oramong individuals.Percentage of horizontal and vertical soil coverage by root showed that root foraging capability along soil depth was better than within the horizontal dimension.In brief,our data indicated that FBP ofwheat RSA could be achieved using the protocol of datadriven model-assisted phenotyping procedure.The proposed protocol was demonstrated useful for FBP of RSAs.It was proved effective to illustrate the topological structures of the wheat root system and to quantify RSAderived parameters,this could be a useful tool for characterizing and analyzing the structural distortion,heterogeneous distribution and the soil space exploration characteristics of wheat root.