Ultrafast lasers generating high-repetition-rate ultrashort pulses through various mode-locking methods can benefit many important applications,including communications,materials processing,astronomical observation,et...Ultrafast lasers generating high-repetition-rate ultrashort pulses through various mode-locking methods can benefit many important applications,including communications,materials processing,astronomical observation,etc.For decades,mode-locking based on dissipative four-wave-mixing(DFWM)has been fundamental in producing pulses with repetition rates on the order of gigahertz(GHz),where multiwavelength comb filters and long nonlinear components are elemental.Recently,this method has been improved using filter-driven DFWM,which exploits both the filtering and nonlinear features of silica microring resonators.However,the fabrication complexity and coupling loss between waveguides and fibers are problematic.We demonstrate a tens-to hundreds-of gigahertz-stable pulsed all-fiber laser based on a hybrid plasmonic microfiber knot resonator device.Unlike previously reported pulse generation mechanisms,the operation utilizes the nonlinear-polarization-rotation(NPR)effect introduced by the polarization-dependent feature of the device to increase intracavity power for boosting DFWM mode-locking,which we term NPRstimulated DFWM.The easily fabricated versatile device acts as a polarizer,comb filter,and nonlinear component simultaneously,thereby introducing an application of microfiber resonator devices in ultrafast and nonlinear photonics.We believe that our work underpins a significant improvement in achieving practical low-cost ultrafast light sources.展开更多
With the increasing complexity of power system structures and the increasing penetration of renewable energy,the number of possible power system operation modes increases dramatically.It is difficult to make manual po...With the increasing complexity of power system structures and the increasing penetration of renewable energy,the number of possible power system operation modes increases dramatically.It is difficult to make manual power flow adjustments to establish an initial convergent power flow that is suitable for operation mode analysis.At present,problems of low efficiency and long time consumption are encountered in the formulation of operation modes,resulting in a very limited number of generated operation modes.In this paper,we propose an intelligent power flow adjustment and generation model based on a deep network and reinforcement learning.First,a discriminator is trained to judge the power flow convergence,and the output of this discriminator is used to construct a value function.Then,the reinforcement learning method is adopted to learn a strategy for power flow convergence adjustment.Finally,a large number of convergent power flow samples are generated using the learned adjustment strategy.Compared with the traditional flow adjustment method,the proposed method has significant advantages that the learning of the power flow adjustment strategy does not depend on the parameters of the power system model.Therefore,this strategy can be automatically learned without manual intervention,which allows a large number of different operation modes to be efficiently formulated.The verification results of a case study show that the proposed method can independently learn a power flow adjustment strategy and generate various convergent power flows.展开更多
In this study, we investigate the fabrication of periodically poled lithium niobate(PPLN) microdisk cavities on a chip. These resonators are fabricated from a PPLN film with a 16 μm poling period on insulator using c...In this study, we investigate the fabrication of periodically poled lithium niobate(PPLN) microdisk cavities on a chip. These resonators are fabricated from a PPLN film with a 16 μm poling period on insulator using conventional microfabrication techniques.The quality factor of the PPLN microdisk resonators with a 40-μm radius and a 700-nm thickness is 6.7×10~5. Second harmonic generation(SHG) with an efficiency of 2.2×10^(-6) mW(-1) is demonstrated in the fabricated PPLN microdisks. The nonlinear conversion efficiency could be considerably enhanced by optimizing the period and pattern of the poled structure and by improving the cavity quality factors.展开更多
We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser with a Yb:CaYAlO4 crystal as the gain medium. Pulse duration as short as 33 fs was obtained directly from the oscillator at a repet...We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser with a Yb:CaYAlO4 crystal as the gain medium. Pulse duration as short as 33 fs was obtained directly from the oscillator at a repetition rate of 115 MHz. The central wavelength was at 1059 nm with a spectral bandwidth of 49 nm. These are, to the bestof our knowledge, the shortest pulses generated from a Yb:CaYAlO4 oscillator.展开更多
Global renewable energy has maintained a steady growth in recent years, mainly fostered by national policies and increasing demand. Analyzing the experience of renewable energy development in developed countries can b...Global renewable energy has maintained a steady growth in recent years, mainly fostered by national policies and increasing demand. Analyzing the experience of renewable energy development in developed countries can be important to provide reference and guidance for its adoption in other countries. First, we compare and summarize definitions of distributed generation from 18 leading countries and organizations in renewable energy. On this basis, we provide three basic characteristics for successful distributed generation using renewable resources. Then, we empirically analyze the distributed and centralized development of renewable energy in Germany with focus on wind and photovoltaic power. We determined that 95% of the photovoltaic generation and 85% of the wind power generation is distributed in Germany, suggesting that the most suitable generation mode for renewable energy is the distributed approach.展开更多
Whispering-gallery-mode(WGM)microresonators can greatly enhance light-matter interaction,making them indispensable units for frequency conversion in nonlinear optics.Efficient nonlinear wave mixing in microresonators ...Whispering-gallery-mode(WGM)microresonators can greatly enhance light-matter interaction,making them indispensable units for frequency conversion in nonlinear optics.Efficient nonlinear wave mixing in microresonators requires stringent simultaneous optical resonance and phase-matching conditions.Thus,it is challenging to achieve efficient frequency conversion over a broad bandwidth.Here,we demonstrate broadband second-harmonic generation(SHG)in the x-cut thinfilm lithium niobate(TFLN)microdisk with a quality factor above 107by applying the cyclic quasi-phase-matching(CQPM)mechanism,which is intrinsically applicable for broadband operation.Broadband SHG of continuous-wave laser with a maximum normalized conversion efficiency of~15%/m W is achieved with a bandwidth spanning over 100 nm in the telecommunication band.Furthermore,broadband SHG of femtosecond lasers,supercontinuum lasers,and amplified spontaneous emission in the telecommunication band is also experimentally observed.The work is beneficial for integrated nonlinear photonics devices like frequency converters and optical frequency comb generator based on second-order nonlinearity on the TFLN platform.展开更多
With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify ...With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify the hydrocarbon generation mode and hydrocarbon generation histories in deep formations.In this study,a gold tube-autoclave closed system was used to simulate the hydrocarbon generation processes and establish the hydrocarbon generation mode of different types of kerogen.Then,constrained by the thermal history and hydrocarbon generation kinetics,hydrocarbon generation histories were modeled.The results show that hydrocarbon generation evolution can be divided into five stages,and the maturity of each stage is different.The hydrocarbon generation history of the source rocks of the Shahejie 3 Formation mainly dates from the early depositional period of the Shahejie 1 Formation to the middle depositional period of the Dongying Formation.Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics is more in line with actual geological conditions.Moreover,this research can provide important hydrocarbon generation parameters for deep oil and gas exploration and exploitation of the Shahejie 3 Formation in the Dongpu Depression.展开更多
Photonic moirésuperlattice as an emerging platform of flatbands can tightly confine the light inside the cavity and has important applications not only in linear optics but also in nonlinear optics.In this paper,...Photonic moirésuperlattice as an emerging platform of flatbands can tightly confine the light inside the cavity and has important applications not only in linear optics but also in nonlinear optics.In this paper,we numerically investigate the third-and fifth-order harmonic generation(THG and FHG)in photonic moirésuperlattices fabricated by the nonlinear material silicon.The high conversion efficiency of THG and FHG is obtained at a relatively low intensity of fundamental light,e.g.,the maximum conversion efficiency of THG and FHG arrives even up to be 10^(−2) and 10^(−9) at the fundamental intensity of 30 kW/m^(2),respectively,in the moirésuperlattice of near flat band formed by the twist angle 6.01°.The results indicate the photonic moirésuperlattice of a high-quality factor and flatbands is a promising platform for efficient nonlinear processes and advanced photonic devices.展开更多
基金sponsored by the National Natural Science Foundation of China(Grant Nos.61925502,61535005,and 61975107)the National Key R&D Program of China(Grant Nos.2017YFA0303700 and 2017YFA0700503).
文摘Ultrafast lasers generating high-repetition-rate ultrashort pulses through various mode-locking methods can benefit many important applications,including communications,materials processing,astronomical observation,etc.For decades,mode-locking based on dissipative four-wave-mixing(DFWM)has been fundamental in producing pulses with repetition rates on the order of gigahertz(GHz),where multiwavelength comb filters and long nonlinear components are elemental.Recently,this method has been improved using filter-driven DFWM,which exploits both the filtering and nonlinear features of silica microring resonators.However,the fabrication complexity and coupling loss between waveguides and fibers are problematic.We demonstrate a tens-to hundreds-of gigahertz-stable pulsed all-fiber laser based on a hybrid plasmonic microfiber knot resonator device.Unlike previously reported pulse generation mechanisms,the operation utilizes the nonlinear-polarization-rotation(NPR)effect introduced by the polarization-dependent feature of the device to increase intracavity power for boosting DFWM mode-locking,which we term NPRstimulated DFWM.The easily fabricated versatile device acts as a polarizer,comb filter,and nonlinear component simultaneously,thereby introducing an application of microfiber resonator devices in ultrafast and nonlinear photonics.We believe that our work underpins a significant improvement in achieving practical low-cost ultrafast light sources.
基金supported by the Science and Technology Project of the State Grid Corporation of China(No.5400-201935258A-0-0-00)the National Natural Science Foundation of China(No.51777104)
文摘With the increasing complexity of power system structures and the increasing penetration of renewable energy,the number of possible power system operation modes increases dramatically.It is difficult to make manual power flow adjustments to establish an initial convergent power flow that is suitable for operation mode analysis.At present,problems of low efficiency and long time consumption are encountered in the formulation of operation modes,resulting in a very limited number of generated operation modes.In this paper,we propose an intelligent power flow adjustment and generation model based on a deep network and reinforcement learning.First,a discriminator is trained to judge the power flow convergence,and the output of this discriminator is used to construct a value function.Then,the reinforcement learning method is adopted to learn a strategy for power flow convergence adjustment.Finally,a large number of convergent power flow samples are generated using the learned adjustment strategy.Compared with the traditional flow adjustment method,the proposed method has significant advantages that the learning of the power flow adjustment strategy does not depend on the parameters of the power system model.Therefore,this strategy can be automatically learned without manual intervention,which allows a large number of different operation modes to be efficiently formulated.The verification results of a case study show that the proposed method can independently learn a power flow adjustment strategy and generate various convergent power flows.
基金supported by the National Natural Science Foundation of China(Grant Nos.11734009,11674181,11774182,and 11674184)the 111 Project(Grant No.B07013)+1 种基金PCSIRT(Grant No.IRT 13R29)CAS Interdisciplinary Innovation Team
文摘In this study, we investigate the fabrication of periodically poled lithium niobate(PPLN) microdisk cavities on a chip. These resonators are fabricated from a PPLN film with a 16 μm poling period on insulator using conventional microfabrication techniques.The quality factor of the PPLN microdisk resonators with a 40-μm radius and a 700-nm thickness is 6.7×10~5. Second harmonic generation(SHG) with an efficiency of 2.2×10^(-6) mW(-1) is demonstrated in the fabricated PPLN microdisks. The nonlinear conversion efficiency could be considerably enhanced by optimizing the period and pattern of the poled structure and by improving the cavity quality factors.
基金supported by the National Major Scientific Instruments Development Project of China (Grant No. 2012YQ120047)the National Natural Science Foundation of China (Grant No. 61205130)
文摘We experimentally demonstrated a diode-pumped Kerr-lens mode-locked femtosecond laser with a Yb:CaYAlO4 crystal as the gain medium. Pulse duration as short as 33 fs was obtained directly from the oscillator at a repetition rate of 115 MHz. The central wavelength was at 1059 nm with a spectral bandwidth of 49 nm. These are, to the bestof our knowledge, the shortest pulses generated from a Yb:CaYAlO4 oscillator.
基金supported by National Natural Science Foundation of China (No.U1766201)the State Grid Science and Technology Project (Title: Research on China’s New Energy Resources & Development Roadmap)
文摘Global renewable energy has maintained a steady growth in recent years, mainly fostered by national policies and increasing demand. Analyzing the experience of renewable energy development in developed countries can be important to provide reference and guidance for its adoption in other countries. First, we compare and summarize definitions of distributed generation from 18 leading countries and organizations in renewable energy. On this basis, we provide three basic characteristics for successful distributed generation using renewable resources. Then, we empirically analyze the distributed and centralized development of renewable energy in Germany with focus on wind and photovoltaic power. We determined that 95% of the photovoltaic generation and 85% of the wind power generation is distributed in Germany, suggesting that the most suitable generation mode for renewable energy is the distributed approach.
基金supported by the National Natural Science Foundation of China(Nos.12074252,12192252,and 62022058)the National Key Research and Development Program of China(No.2022YFA1205101)+1 种基金the Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01-ZX06)and the Yangyang Development Fund。
文摘Whispering-gallery-mode(WGM)microresonators can greatly enhance light-matter interaction,making them indispensable units for frequency conversion in nonlinear optics.Efficient nonlinear wave mixing in microresonators requires stringent simultaneous optical resonance and phase-matching conditions.Thus,it is challenging to achieve efficient frequency conversion over a broad bandwidth.Here,we demonstrate broadband second-harmonic generation(SHG)in the x-cut thinfilm lithium niobate(TFLN)microdisk with a quality factor above 107by applying the cyclic quasi-phase-matching(CQPM)mechanism,which is intrinsically applicable for broadband operation.Broadband SHG of continuous-wave laser with a maximum normalized conversion efficiency of~15%/m W is achieved with a bandwidth spanning over 100 nm in the telecommunication band.Furthermore,broadband SHG of femtosecond lasers,supercontinuum lasers,and amplified spontaneous emission in the telecommunication band is also experimentally observed.The work is beneficial for integrated nonlinear photonics devices like frequency converters and optical frequency comb generator based on second-order nonlinearity on the TFLN platform.
基金funded by the National Major Science and Technology Projects of China(Grant No.2016ZX05006-004)the Sichuan Youth Science and Technology Foundation(Grant No.2016JQ0043)the National Natural Science Foundation of China(Grant No.41972144)
文摘With the increasing exploration and development of typical hydrocarbon-rich depressions,such as the Dongpu Depression,the exploitation difficulty of shallow formations is increasing.There is an urgent need to clarify the hydrocarbon generation mode and hydrocarbon generation histories in deep formations.In this study,a gold tube-autoclave closed system was used to simulate the hydrocarbon generation processes and establish the hydrocarbon generation mode of different types of kerogen.Then,constrained by the thermal history and hydrocarbon generation kinetics,hydrocarbon generation histories were modeled.The results show that hydrocarbon generation evolution can be divided into five stages,and the maturity of each stage is different.The hydrocarbon generation history of the source rocks of the Shahejie 3 Formation mainly dates from the early depositional period of the Shahejie 1 Formation to the middle depositional period of the Dongying Formation.Hydrocarbon generation history constrained by thermal history and hydrocarbon generation kinetics is more in line with actual geological conditions.Moreover,this research can provide important hydrocarbon generation parameters for deep oil and gas exploration and exploitation of the Shahejie 3 Formation in the Dongpu Depression.
基金support from the National Natural Science Foundation of China(Grant Nos.12174228,12274271,and 11874243).
文摘Photonic moirésuperlattice as an emerging platform of flatbands can tightly confine the light inside the cavity and has important applications not only in linear optics but also in nonlinear optics.In this paper,we numerically investigate the third-and fifth-order harmonic generation(THG and FHG)in photonic moirésuperlattices fabricated by the nonlinear material silicon.The high conversion efficiency of THG and FHG is obtained at a relatively low intensity of fundamental light,e.g.,the maximum conversion efficiency of THG and FHG arrives even up to be 10^(−2) and 10^(−9) at the fundamental intensity of 30 kW/m^(2),respectively,in the moirésuperlattice of near flat band formed by the twist angle 6.01°.The results indicate the photonic moirésuperlattice of a high-quality factor and flatbands is a promising platform for efficient nonlinear processes and advanced photonic devices.