By simulating edge dislocation emissions from a mode I crack tip along multiple inclined slip planes, the plastic zone and dislocation-free zone around the crack tip are obtained. It is found that the shape of the mod...By simulating edge dislocation emissions from a mode I crack tip along multiple inclined slip planes, the plastic zone and dislocation-free zone around the crack tip are obtained. It is found that the shape of the mode I plastic zone consists of two leaning forward loops which is better agreement with experimental observations. Except at the crack tip there are also stress peaks in front of the crack tip. A formula of the maximum peak stress as a function of the applied stress intensity factor and the friction stress has been regressed.展开更多
Mode-I fracture behavior of glass-carbon fiber reinforced hybrid polymer composite was investigated based on experimental and finite element analysis. The compact tension (CT) specimen was employed to conduct mode-I f...Mode-I fracture behavior of glass-carbon fiber reinforced hybrid polymer composite was investigated based on experimental and finite element analysis. The compact tension (CT) specimen was employed to conduct mode-I fracture test using special loading fixtures as per ASTM standards. Fracture toughness was determined experimentally for along and across the fiber orientation of the specimen. Results indicated that the cracked specimens are tougher along the fiber orientations as compared with across the fiber orientations. A similar fracture test was simulated using finite element analysis software ANSYS. Critical stress intensity factor (K) was calculated at fracture/failure using displacement extrapolation method, for both along and across the fiber orientations. The fractured surfaces of the glasscarbon epoxy composite under mode-I loading condition was examined by electron microscope.展开更多
of PhD thesis For the mode I rock fracture toughness measurement,three standard methods have been recommended by the ISRM,but there has not been a standard method for the determination of mode II and mixed mode I-II r...of PhD thesis For the mode I rock fracture toughness measurement,three standard methods have been recommended by the ISRM,but there has not been a standard method for the determination of mode II and mixed mode I-II rock fracture toughness. However mode II and mixed mode I-II fracturing of rock structures is more commonly observed than mode I in various geological and structural engineering settings. So it is of great important to thoroughly research these rock fracture problems and establish a standard method for determining the mode II or mixed mode I-II fracture toughness for rock materials. Based on the progress made for mode I rock fracture research,the cracked chevron notched Brazilian disk (CCNBD) specimen was also introduced for mode II and mixed mode I-II rock fracture toughness measurement. When the crack is orientated at an angle with respect to the diametrical loading,the crack of the CCNBD specimen is exposed to the mode II or mixed mode I-II stress distribution conditions. The solutions for stress intensity factors in the vicinity of the crack tip have been evaluated by the stepwise superimposition technique. In order to make sure that the theoretical analysis is correct,numerical calculation method has been employed to calibrate the theoretical results. It has been proved that the theoretical results yielded by the dislocation method are correct and reliable. According to the characteristic that the propagation of the crack in the CCNBD specimen is in its own plane and application of the energy superposition principle,the stress intensity factor of the mixed mode I-II has been defined in dimensionless terms as 212II2Imix])()[(***+=YYY. It was found that the curve of *mixY was concave. There exists a lowest point which corresponds to the maximum external load and indicates the crack has reached its critical state. Since the values of ***IIImix and YYY, are only dependent on the specimen geometry (qaaa and 10B,,),the critical values of ***IIImix and YYY, can be to known as long as the CCNBD specimen 展开更多
文摘By simulating edge dislocation emissions from a mode I crack tip along multiple inclined slip planes, the plastic zone and dislocation-free zone around the crack tip are obtained. It is found that the shape of the mode I plastic zone consists of two leaning forward loops which is better agreement with experimental observations. Except at the crack tip there are also stress peaks in front of the crack tip. A formula of the maximum peak stress as a function of the applied stress intensity factor and the friction stress has been regressed.
文摘Mode-I fracture behavior of glass-carbon fiber reinforced hybrid polymer composite was investigated based on experimental and finite element analysis. The compact tension (CT) specimen was employed to conduct mode-I fracture test using special loading fixtures as per ASTM standards. Fracture toughness was determined experimentally for along and across the fiber orientation of the specimen. Results indicated that the cracked specimens are tougher along the fiber orientations as compared with across the fiber orientations. A similar fracture test was simulated using finite element analysis software ANSYS. Critical stress intensity factor (K) was calculated at fracture/failure using displacement extrapolation method, for both along and across the fiber orientations. The fractured surfaces of the glasscarbon epoxy composite under mode-I loading condition was examined by electron microscope.
文摘of PhD thesis For the mode I rock fracture toughness measurement,three standard methods have been recommended by the ISRM,but there has not been a standard method for the determination of mode II and mixed mode I-II rock fracture toughness. However mode II and mixed mode I-II fracturing of rock structures is more commonly observed than mode I in various geological and structural engineering settings. So it is of great important to thoroughly research these rock fracture problems and establish a standard method for determining the mode II or mixed mode I-II fracture toughness for rock materials. Based on the progress made for mode I rock fracture research,the cracked chevron notched Brazilian disk (CCNBD) specimen was also introduced for mode II and mixed mode I-II rock fracture toughness measurement. When the crack is orientated at an angle with respect to the diametrical loading,the crack of the CCNBD specimen is exposed to the mode II or mixed mode I-II stress distribution conditions. The solutions for stress intensity factors in the vicinity of the crack tip have been evaluated by the stepwise superimposition technique. In order to make sure that the theoretical analysis is correct,numerical calculation method has been employed to calibrate the theoretical results. It has been proved that the theoretical results yielded by the dislocation method are correct and reliable. According to the characteristic that the propagation of the crack in the CCNBD specimen is in its own plane and application of the energy superposition principle,the stress intensity factor of the mixed mode I-II has been defined in dimensionless terms as 212II2Imix])()[(***+=YYY. It was found that the curve of *mixY was concave. There exists a lowest point which corresponds to the maximum external load and indicates the crack has reached its critical state. Since the values of ***IIImix and YYY, are only dependent on the specimen geometry (qaaa and 10B,,),the critical values of ***IIImix and YYY, can be to known as long as the CCNBD specimen