We present nuclear physics programs based on the planned experiments using rare isotope beams(RIBs) for the future Korean Rare Isotope Beams Accelerator facility(KRIA). This ambitious facility has both an Isotope Sepa...We present nuclear physics programs based on the planned experiments using rare isotope beams(RIBs) for the future Korean Rare Isotope Beams Accelerator facility(KRIA). This ambitious facility has both an Isotope Separation On Line(ISOL) and fragmentation capability for producing RIBs and accelerating beams of wide range mass of nuclides with energies of a few to hundreds Me V per nucleon. Low energy RIBs at Elab = 5 to 20 Me V per nucleon are for the study of nuclear structure and nuclear astrophysics toward and beyond the drip lines while higher energy RIBs produced by inflight fragmentation with the reaccelerated ions from the ISOL enable to explore the neutron drip lines in intermediate mass regions. The planned programs have goals for investigating internal structures of the exotic nuclei toward and beyond the nucleon drip lines by addressing the following issues: how the shell structure evolves in areas of extreme proton to neutron imbalance; whether the isospin symmetry maintains in isobaric mirror nuclei at and beyond the drip lines; how two-proton radioactivity affects abundances of the elements; what the role of the continuum states including resonant states above protondecay threshold in exotic nuclei is in astrophysical nuclear reaction processes, and how the nuclear reaction rates triggered by unbound proton-rich nuclei make an effect on rapid proton capture processes in a very hot stellar plasma.展开更多
The ^7Be(p, γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coeffici...The ^7Be(p, γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coefficient (ANC) for the virtual decay ^8Bg.s. → ^7Be + p. By using the charge symmetry relation, we obtain this proton ANC with the single neutron ANC of ^8Lig.s.→^7Li + n, which is determined with the distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) analysis of the ^7Li(d, p)^8Li angular distribution. The astrophysical S-factors and reaction rates of the direct capture process in the 7Be(p, y)SB reaction are further deduced at energies of astrophysical relevance. The astrophysical S-factor at zero energy for direct capture, S 17(0), is derived to be (19.9 ± 3.5) eV b in good agreement with the most recent recommended value. The contributions of the 1 ^+ and 3^+ resonances to the S-factor and reaction rate are also evaluated. The present result demonstrates that the direct capture dominates the ^7Be(p, γ)8B reaction in the whole temperature range. This work provides an independent examination to the current results of the ^7Be(p, γ)8B reaction.展开更多
文摘We present nuclear physics programs based on the planned experiments using rare isotope beams(RIBs) for the future Korean Rare Isotope Beams Accelerator facility(KRIA). This ambitious facility has both an Isotope Separation On Line(ISOL) and fragmentation capability for producing RIBs and accelerating beams of wide range mass of nuclides with energies of a few to hundreds Me V per nucleon. Low energy RIBs at Elab = 5 to 20 Me V per nucleon are for the study of nuclear structure and nuclear astrophysics toward and beyond the drip lines while higher energy RIBs produced by inflight fragmentation with the reaccelerated ions from the ISOL enable to explore the neutron drip lines in intermediate mass regions. The planned programs have goals for investigating internal structures of the exotic nuclei toward and beyond the nucleon drip lines by addressing the following issues: how the shell structure evolves in areas of extreme proton to neutron imbalance; whether the isospin symmetry maintains in isobaric mirror nuclei at and beyond the drip lines; how two-proton radioactivity affects abundances of the elements; what the role of the continuum states including resonant states above protondecay threshold in exotic nuclei is in astrophysical nuclear reaction processes, and how the nuclear reaction rates triggered by unbound proton-rich nuclei make an effect on rapid proton capture processes in a very hot stellar plasma.
基金supported by the National Natural Science Foundation of China(Grant Nos.11321064,11490560,11475264,11375269 and11275272)the National Basic Research Program of China(Grant No.2013CB834406)
文摘The ^7Be(p, γ)8B reaction plays a central role not only in the evaluation of solar neutrino fluxes but also in the evolution of the first stars. Study of this reaction requires the asymptotic normalization coefficient (ANC) for the virtual decay ^8Bg.s. → ^7Be + p. By using the charge symmetry relation, we obtain this proton ANC with the single neutron ANC of ^8Lig.s.→^7Li + n, which is determined with the distorted wave Born approximation (DWBA) and adiabatic distorted wave approximation (ADWA) analysis of the ^7Li(d, p)^8Li angular distribution. The astrophysical S-factors and reaction rates of the direct capture process in the 7Be(p, y)SB reaction are further deduced at energies of astrophysical relevance. The astrophysical S-factor at zero energy for direct capture, S 17(0), is derived to be (19.9 ± 3.5) eV b in good agreement with the most recent recommended value. The contributions of the 1 ^+ and 3^+ resonances to the S-factor and reaction rate are also evaluated. The present result demonstrates that the direct capture dominates the ^7Be(p, γ)8B reaction in the whole temperature range. This work provides an independent examination to the current results of the ^7Be(p, γ)8B reaction.