The mirror neuron system consists of a set of brain areas capable of matching action observation with action execution. One core feature of the mirror neuron system is the activation of motor areas by action observati...The mirror neuron system consists of a set of brain areas capable of matching action observation with action execution. One core feature of the mirror neuron system is the activation of motor areas by action observation alone. This unique capacity of the mirror neuron system to match action perception and action execution stimulated the idea that mirror neuron system plays a crucial role in the understanding of the content of observed actions and may participate in procedural learning. These features bear a high potential for neurorehabilitation of motor deficits and of aphasia following stroke. Since the first articles exploring this principle were published, a growing number of follow-up studies have been conducted in the last decade. Though, the combination of action observation with practice of the observed actions seems to constitute the most powerful approach. In the present review, we present the existing studies analyzing the effects of this neurorehabJlitative approach in clinical settings especially in the rehabilitation of stroke associated motor deficits and give a perspective on the ongoing trials by our research group. The data obtained up to date showed significant positive effect of action observation on recovery of motor functions of the upper limbs even in the chronic state after stroke, indicating that our approach might become a new standardized add-on feature of modern neurorehabilitative treatment schemes.展开更多
文摘The mirror neuron system consists of a set of brain areas capable of matching action observation with action execution. One core feature of the mirror neuron system is the activation of motor areas by action observation alone. This unique capacity of the mirror neuron system to match action perception and action execution stimulated the idea that mirror neuron system plays a crucial role in the understanding of the content of observed actions and may participate in procedural learning. These features bear a high potential for neurorehabilitation of motor deficits and of aphasia following stroke. Since the first articles exploring this principle were published, a growing number of follow-up studies have been conducted in the last decade. Though, the combination of action observation with practice of the observed actions seems to constitute the most powerful approach. In the present review, we present the existing studies analyzing the effects of this neurorehabJlitative approach in clinical settings especially in the rehabilitation of stroke associated motor deficits and give a perspective on the ongoing trials by our research group. The data obtained up to date showed significant positive effect of action observation on recovery of motor functions of the upper limbs even in the chronic state after stroke, indicating that our approach might become a new standardized add-on feature of modern neurorehabilitative treatment schemes.