Inheritance of line Jinghe891-l resistant to pathotype of Puccinia striiformis in two patterns of temperature (Normal: day 18℃ /night 10℃ , High: day 24℃ /night 15℃ )was studied in this paper. The results showed t...Inheritance of line Jinghe891-l resistant to pathotype of Puccinia striiformis in two patterns of temperature (Normal: day 18℃ /night 10℃ , High: day 24℃ /night 15℃ )was studied in this paper. The results showed that there were at least two pairs of dominant major genes and one pair of recessive minor genes in Jinghe 891-1. The two pairs of major genes that conferred resistance to CY31 were allelic or linked closely with resistance gene in Jubilejna Ⅱ , Kangyin655 and T. spelta Album. They were novel resistance genes and were inherited in a repeated or independent mode. The minor genes, which could modify the major genes, were sensitive to temperature and conferred resistance to all pathotypes of Puccinia striiformis in China. It is recommended that this line can be used as an important resource stock.展开更多
The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely dis...The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales. Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REV and hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2 D or 3 D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.展开更多
基金supported by the Beijing Natural Science Foundation(6962006).
文摘Inheritance of line Jinghe891-l resistant to pathotype of Puccinia striiformis in two patterns of temperature (Normal: day 18℃ /night 10℃ , High: day 24℃ /night 15℃ )was studied in this paper. The results showed that there were at least two pairs of dominant major genes and one pair of recessive minor genes in Jinghe 891-1. The two pairs of major genes that conferred resistance to CY31 were allelic or linked closely with resistance gene in Jubilejna Ⅱ , Kangyin655 and T. spelta Album. They were novel resistance genes and were inherited in a repeated or independent mode. The minor genes, which could modify the major genes, were sensitive to temperature and conferred resistance to all pathotypes of Puccinia striiformis in China. It is recommended that this line can be used as an important resource stock.
基金ChinaCommitteeofEducation theUniver sityofArizonaandtheMetropolitanWaterDistrictofSouthernCaliforni a.
文摘The continuum approach in fluid flow modeling is generally applied to porous geological media, but has limited applicability to fractured rocks. With the presence of a discrete fracture network relatively sparsely distributed in the matrix, it may be difficult or erroneous to use a porous medium fluid flow model with continuum assumptions to describe the fluid flow in fractured rocks at small or even large field scales. A discrete fracture fluid flow approach incorporating a stochastic fracture network with numerical fluid flow simulations could have the capability of capturing fluid flow behaviors such as inhomogeneity and anisotropy while reflecting the changes of hydraulic features at different scales. Moreover, this approach can be implemented to estimate the size of the representative elementary volume (REV) in order to find out the scales at which a porous medium flow model could be applied, and then to determine the hydraulic conductivity tensor for fractured rocks. The following topics are focused on in this study: (a) conceptual discrete fracture fluid flow modeling incorporating a stochastic fracture network with numerical flow simulations; (b) estimation of REV and hydraulic conductivity tensor for fractured rocks utilizing a stochastic fracture network with numerical fluid flow simulations; (c) investigation of the effect of fracture orientation and density on the hydraulic conductivity and REV by implementing a stochastic fracture network with numerical fluid flow simulations, and (d) fluid flow conceptual models accounting for major and minor fractures in the 2 D or 3 D flow fields incorporating a stochastic fracture network with numerical fluid flow simulations.