Objective Present a new features selection algorithm. Methods based on rule induction and field knowledge. Results This algorithm can be applied in catching dataflow when detecting network intrusions, only the sub ...Objective Present a new features selection algorithm. Methods based on rule induction and field knowledge. Results This algorithm can be applied in catching dataflow when detecting network intrusions, only the sub dataset including discriminating features is catched. Then the time spend in following behavior patterns mining is reduced and the patterns mined are more precise. Conclusion The experiment results show that the feature subset catched by this algorithm is more informative and the dataset’s quantity is reduced significantly.展开更多
A new incremental clustering framework is presented, the basis of which is the induction as inverted deduction. Induction is inherently risky because it is not truth-preserving. If the clustering is considered as an i...A new incremental clustering framework is presented, the basis of which is the induction as inverted deduction. Induction is inherently risky because it is not truth-preserving. If the clustering is considered as an induction process, the key to build a valid clustering is to minimize the risk of clustering. From the viewpoint of modal logic, the clustering can be described as Kripke frames and Kripke models which are reflexive and symmetric. Based on the theory of modal logic, its properties can be described by system B in syntax. Thus, the risk of clustering can be calculated by the deduction relation of system B and proximity induction theorem described. Since the new proposed framework imposes no additional restrictive conditions of clustering algorithm, it is therefore a universal framework. An incremental clustering algorithm can be easily constructed by this framework from any given nonincremental clustering algorithm. The experiments show that the lower the a priori risk is, the more effective this framework is. It can be demonstrated that this framework is generally valid.展开更多
Rule induction(RI)produces classifiers containing simple yet effective‘If–Then’rules for decision makers.RI algorithms normally based on PRISM suffer from a few drawbacks mainly related to rule pruning and rule-sha...Rule induction(RI)produces classifiers containing simple yet effective‘If–Then’rules for decision makers.RI algorithms normally based on PRISM suffer from a few drawbacks mainly related to rule pruning and rule-sharing items(attribute values)in the training data instances.In response to the above two issues,a new dynamic rule induction(DRI)method is proposed.Whenever a rule is produced and its related training data instances are discarded,DRI updates the frequency of attribute values that are used to make the next in-line rule to reflect the data deletion.Therefore,the attribute value frequencies are dynamically adjusted each time a rule is generated rather statically as in PRISM.This enables DRI to generate near perfect rules and realistic classifiers.Experimental results using different University of California Irvine data sets show competitive performance in regards to error rate and classifier size of DRI when compared to other RI algorithms.展开更多
文摘Objective Present a new features selection algorithm. Methods based on rule induction and field knowledge. Results This algorithm can be applied in catching dataflow when detecting network intrusions, only the sub dataset including discriminating features is catched. Then the time spend in following behavior patterns mining is reduced and the patterns mined are more precise. Conclusion The experiment results show that the feature subset catched by this algorithm is more informative and the dataset’s quantity is reduced significantly.
基金supported by the National High-Tech Research and Development Program of China(2006AA12A106).
文摘A new incremental clustering framework is presented, the basis of which is the induction as inverted deduction. Induction is inherently risky because it is not truth-preserving. If the clustering is considered as an induction process, the key to build a valid clustering is to minimize the risk of clustering. From the viewpoint of modal logic, the clustering can be described as Kripke frames and Kripke models which are reflexive and symmetric. Based on the theory of modal logic, its properties can be described by system B in syntax. Thus, the risk of clustering can be calculated by the deduction relation of system B and proximity induction theorem described. Since the new proposed framework imposes no additional restrictive conditions of clustering algorithm, it is therefore a universal framework. An incremental clustering algorithm can be easily constructed by this framework from any given nonincremental clustering algorithm. The experiments show that the lower the a priori risk is, the more effective this framework is. It can be demonstrated that this framework is generally valid.
文摘Rule induction(RI)produces classifiers containing simple yet effective‘If–Then’rules for decision makers.RI algorithms normally based on PRISM suffer from a few drawbacks mainly related to rule pruning and rule-sharing items(attribute values)in the training data instances.In response to the above two issues,a new dynamic rule induction(DRI)method is proposed.Whenever a rule is produced and its related training data instances are discarded,DRI updates the frequency of attribute values that are used to make the next in-line rule to reflect the data deletion.Therefore,the attribute value frequencies are dynamically adjusted each time a rule is generated rather statically as in PRISM.This enables DRI to generate near perfect rules and realistic classifiers.Experimental results using different University of California Irvine data sets show competitive performance in regards to error rate and classifier size of DRI when compared to other RI algorithms.