To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line ...To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.展开更多
In the applications of primary spectrum pyrometry,based on the dynamic range and the minimum sensibility of the sensor,the application issues,such as the measurement range and the measurement partition,were investigat...In the applications of primary spectrum pyrometry,based on the dynamic range and the minimum sensibility of the sensor,the application issues,such as the measurement range and the measurement partition,were investigated through theoretical analyses. For a developed primary spectrum pyrometer,the theoretical predictions of measurement range and the distributions of measurement partition were presented through numerical simulations. And the measurement experiments of high-temperature blackbody and standard temperature lamp were processed to further verify the above theoretical analyses and numerical results. Therefore the research in the paper provides the helpful supports for the applications of primary spectrum pyrometer and other radiation pyrometers.展开更多
In this paper, the source localization by utilizing the measurements of a single electromagnetic (EM) vector-sensor is investigated in the framework of the geometric algebra of Euclidean 3-space. In order to describ...In this paper, the source localization by utilizing the measurements of a single electromagnetic (EM) vector-sensor is investigated in the framework of the geometric algebra of Euclidean 3-space. In order to describe the orthogonality among the electric and magnetic measurements, two multivectors of the geometric algebra of Euclidean 3-space (G3) are used to model the outputs of a spatially collocated EM vector-sensor. Two estimators for the wave propagation vector estimation are then formulated by the inner product between a vector and a bivector in the G3. Since the information used by the two estimators is different, a weighted inner product estimator is then proposed to fuse the two estimators together in the sense of the minimum mean square error (MMSE). Analytical results show that the statistical performances of the weighted inner product estimator are always better than its traditional cross product counterpart. The efficacy of the weighted inner product estimator and the correctness of the analytical predictions are demonstrated by simulation results.展开更多
基金supported by the National Natural Science Foundation of China (61971470)。
文摘To address the problem of building linear barrier coverage with the location restriction, an optimization method for deploying multistatic radars is proposed, where the location restriction splits the deployment line into two segments. By proving the characteristics of deployment patterns, an optimal deployment sequence consisting of multiple deployment patterns is proposed and exploited to cover each segment. The types and numbers of deployment patterns are determined by an algorithm that combines the integer linear programming(ILP)and exhaustive method(EM). In addition, to reduce the computation amount, a formula is introduced to calculate the upper threshold of receivers’ number in a deployment pattern. Furthermore, since the objective function is non-convex and non-analytic, the overall model is divided into two layers concerning two suboptimization problems. Subsequently, another algorithm that integrates the segments and layers is proposed to determine the deployment parameters, such as the minimum cost, parameters of the optimal deployment sequence, and the location of the split point. Simulation results demonstrate that the proposed method can effectively determine the optimal deployment parameters under the location restriction.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 50606033 and 50674079)
文摘In the applications of primary spectrum pyrometry,based on the dynamic range and the minimum sensibility of the sensor,the application issues,such as the measurement range and the measurement partition,were investigated through theoretical analyses. For a developed primary spectrum pyrometer,the theoretical predictions of measurement range and the distributions of measurement partition were presented through numerical simulations. And the measurement experiments of high-temperature blackbody and standard temperature lamp were processed to further verify the above theoretical analyses and numerical results. Therefore the research in the paper provides the helpful supports for the applications of primary spectrum pyrometer and other radiation pyrometers.
基金National Natural Science Foundation of China(61171127)National Basic Research Program of China(2011CB302903)
文摘In this paper, the source localization by utilizing the measurements of a single electromagnetic (EM) vector-sensor is investigated in the framework of the geometric algebra of Euclidean 3-space. In order to describe the orthogonality among the electric and magnetic measurements, two multivectors of the geometric algebra of Euclidean 3-space (G3) are used to model the outputs of a spatially collocated EM vector-sensor. Two estimators for the wave propagation vector estimation are then formulated by the inner product between a vector and a bivector in the G3. Since the information used by the two estimators is different, a weighted inner product estimator is then proposed to fuse the two estimators together in the sense of the minimum mean square error (MMSE). Analytical results show that the statistical performances of the weighted inner product estimator are always better than its traditional cross product counterpart. The efficacy of the weighted inner product estimator and the correctness of the analytical predictions are demonstrated by simulation results.