期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
一类理想的存取结构的构造 被引量:1
1
作者 李志慧 徐廷廷 张娜 《信息网络安全》 2016年第5期15-22,共8页
构造理想的存取结构对于设计信息率高的秘密共享方案具有重要作用。Shamir(k,n)型方案(区别于Shamir门限方案)对应的存取结构是理想的,但如何求出这类方案对应的互不同构的存取结构是一个需要解决的问题。文章首先提出Shamir(k,n)型方... 构造理想的存取结构对于设计信息率高的秘密共享方案具有重要作用。Shamir(k,n)型方案(区别于Shamir门限方案)对应的存取结构是理想的,但如何求出这类方案对应的互不同构的存取结构是一个需要解决的问题。文章首先提出Shamir(k,n)型方案中两组迹等价的概念,然后将Shamir(k,n)型方案中极小存取结构的同构的判定转化为对应的两组迹的等价问题。文章进而给出了Shamir(k,n)型方案中求极小特权数组的一个算法,利用这个算法可以求出Shamir(k,n)型方案中所有互不等价的迹,从而在理论上完满地解决了Shamir(k,n)型方案中互不同构的理想的存取结构的构造问题。特别地,文章给出有限域F13中当有7个参与者时的所有极小特权数组,并得到了互不等价的迹,进而利用文中的判定方法给出了当有7个参与者时,Shamir(k,n)型方案的所有互不同构的理想的极小存取结构。 展开更多
关键词 Shamir(k n)型方案 极小特权数组 极小存取结构 理想的存取结构
下载PDF
A Novel Secret Sharing Scheme Based on Minimal Linear Codes
2
作者 LI Zhihui SUN Jianhong LI Jing 《Wuhan University Journal of Natural Sciences》 CAS 2013年第5期407-412,共6页
In this paper, we propose a novel space efficient secret sharing scheme on the basis of minimal linear codes, which satisfies the definition of a computationally efficient secret sharing scheme. In the scheme, we part... In this paper, we propose a novel space efficient secret sharing scheme on the basis of minimal linear codes, which satisfies the definition of a computationally efficient secret sharing scheme. In the scheme, we partition the underlying minimal linear code into disjoint classes, establishing a one-to-one correspondence between the minimal authorized subsets of participants and the representative codewords of all different classes. Each participant, with only one short share transmitted through a public channel, can share a large secret. Therefore, the proposed scheme can distribute a large secret in practical applications such as secure information dispersal in sensor networks and secure multiparty computation. 展开更多
关键词 secret sharing scheme computationally efficient secret sharing minimal linear code access structure short share
原文传递
On the Intersection of Binary Linear Codes
3
作者 LIAO Dajian LIU Zihui 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2016年第3期814-824,共11页
For a binary linear code,a new relation between the intersection and(2,2)-separating property is addressed,and a relation between the intersection and the trellis complexity is also given.Using above relations,the aut... For a binary linear code,a new relation between the intersection and(2,2)-separating property is addressed,and a relation between the intersection and the trellis complexity is also given.Using above relations,the authors will apply several classes of binary codes to secret sharing scheme and determine their trellis complexity and separating properties.The authors also present the properties of the intersection of certain kinds of two-weight binary codes.By using the concept of value function,the intersecting properties of general binary codes are described. 展开更多
关键词 minimal access structure minimal codeword separating property trellis complexity two- weight code value function.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部