Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pol...Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.展开更多
An efficient numerical model for wave refraction, diffraction and reflection is presented in this paper. In the model the modified time-dependent mild-slope equation is transformed into an evolution equation and an im...An efficient numerical model for wave refraction, diffraction and reflection is presented in this paper. In the model the modified time-dependent mild-slope equation is transformed into an evolution equation and an improved ADI method involving a relaxation factor is adopted to solve it. The method has the advantage of improving the numerical stability and convergence rate by properly determining the relaxation factor. The range of the relaxation factor making the differential scheme unconditionally stable is determined by stability analysis. Several verifications are performed to examine the accuracy of the present model. The numerical results coincide with the analytic solutions or experimental data very well and the computer time is reduced.展开更多
A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key paramete...A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.展开更多
Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in de...Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.展开更多
A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Ha...A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Hamiltonian formulation for irrotational motions. The bottom topography consists of two components the slowly varying component which satisfies the mild-slope approximation, and the fast varying component with wavelengths on the order of the surface wavelength but amplitudes which scale as a small parameter describing the mild-slope condition. The theory is more widely applicable and contains as special cases the following famous mild-slope type equations: the classical mild-Slope equation, Kirby's extended mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. Finally, good agreement between the classic experimental data concerning Bragg reflection and the present numerical results is observed.展开更多
The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed ...The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed within the framework of small amplitude water-wave theory.Darcy’s law is used to model the wave interaction with the porous medium.It is assumed that the varying bottom extends over a finite interval,connected by a finite length of uniform bottom near an impermeable wall,and a semi-infinite length of bottom in the open water region.The boundary value problem is solved using the eigenfunction expansion method in the uniform bottom regions,while a modified mild-slope equation(MMSE)is used for the region with the varying bottom.Additionally,a mass-conserving jump condition is employed to handle the solution at slope discontinuities in the bottom.A system of equations is derived by matching the solutions at interfaces.The reflection coefficient and force on the breakwater and impermeable wall are plotted and analyzed for various parameters,such as the length of the varying bottom,depth ratio,angle of incidence,and flexural rigidity.It is observed that moderate values of flexural rigidity and depth ratio significantly contribute to an optimum reflection coefficient and reduce the wave force on the wall and breakwater.Remarkably,the outcomes of this study are assumed to be applicable in the construction of this type of breakwater in coastal regions.展开更多
The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccur...The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccurate in areas with irregular shorelines, such as estuaries and harbors. Based on the hyperbolic mild-slope equation in Cartesian coordinates, the numerical model in orthogonal curvilinear coordinates is developed. The transformed model is discretized by the finite difference method and solved by the ADI method with space-staggered grids. The numerical predictions in curvilinear co- ordinates show good agreemenl with the data obtained in three typical physical expedments, which demonstrates that the present model can be used to simulate wave propagation, for normal incidence and oblique incidence, in domains with complicated topography and boundary conditions.展开更多
The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary condition...The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.展开更多
The original hyperbolic mild-slope equation can effectively take into account the combined effects of wave shoaling, refraction, diffraction and reflection, but does not consider the nonlinear effect of waves, and the...The original hyperbolic mild-slope equation can effectively take into account the combined effects of wave shoaling, refraction, diffraction and reflection, but does not consider the nonlinear effect of waves, and the existing numerical schemes for it show some deficiencies. Based on the original hyperbolic mild-slope equation, a nonlinear dispersion relation is introduced in present paper to effectively take the nonlinear effect of waves into account and a new numerical scheme is proposed. The weakly nonlinear dispersion relation and the improved numerical scheme are applied to the simulation of wave transformation over an elliptic shoal. Numerical tests show that the improvement of the numerical scheme makes efficient the solution to the hyperbolic mild-slope equation, A comparison of numerical results with experimental data indicates that the results obtained by use of the new scheme are satisfactory.展开更多
Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship...Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship’s motions.The free surface oscillations inside the flooded well dock is thus distinctive and very complicated.So far,the natural modes of semi-closed floating tanks have not yet been studied.This paper investigates the characteristics of natural modes of a floating semi-closed tank by combining a mode-resolving model based on mild-slope equations and a hydrodynamic model based on computational fluid dynamics.Results show that the first three natural periods(i.e.,74,23.6,and 14 s)of the tank fall into the band of swell and infragravity waves and they could be triggered under certain circumstance.Multi-period free surface oscillations are observed inside the tank,including the longest natural period(i.e.,74 s),though the incident waves are monochromatic.A possible generation mechanism for the long-period mode is explained on the basis of liquid sloshing and harbor oscillations.Moreover,a long-period component with a period close to the natural mode of well dock is observed in the ship motions,which is generated by the interaction between the waves and ship.展开更多
Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with...Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.展开更多
The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is ...The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schrodinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave eouations.展开更多
Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a genera...Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green's second identity. This theory can be reduced to a number of the most typical mild-slope equations currently in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.展开更多
A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved nu...A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved numerically by the finite difference method. Numerical results show that the new method is accurate enough, can be efficiently solved with little programming effort, and can be applied to the calculation of wave radiation stress for large coastal areas.展开更多
On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with th...On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with the terms of (V(h)h)(2) and V(h)(2)h included in the equation. The terms of bottom friction, wind energy input and wave nonlinearity are also introduced into the equation. The wind energy input functions for wind waves and swells are separately considered by adopting Wen's (1989) empirical formula for wind waves and Snyder's observation results for swells. Thus, an extended mild-slope equation is obtained, in which the effects of refraction, diffraction, reflection, current, bottom friction, wind energy input and wave nonlinearity are considered synthetically.展开更多
A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity. The Enler predietor-corrector method and the three-point finite-di...A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity. The Enler predietor-corrector method and the three-point finite-difference method with varying spatial steps are adopted to discretize the time derivatives and the two-dimensional horizontal ones, respectively, thus leading both the time and spatial derivatives to the second-order accuracy. The boundary conditions for the present model are treated on the basis of the general conditions for open and fixed boundaries with an arbitrary reflection coefficient and phase shift. Both the linear and nonlinear versions of the numerical model are applied to the wave propagation and transformation over an elliptic shoal on a sloping beach, respectively, and the linear version is applied to the simulation of wave propagation in a fully open rectangular harbor. From comparison of numerical results with theoretical or experimental ones, it is found that they are in reasonable agreement.展开更多
In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Mean...In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were estab lished. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.展开更多
基金The National Basic Research ("973") Program of China under contract No.2005CB724202the National Natural Science Foundation of China under contract Nos.50709004 and 50779006.
文摘Water waves, wave-induced long-shore currents and movement of pollutants in waves and currents have been numerically studied based on the hyperbolic mild-slope equation, the shallow water equation , as well as the pollutant movement equation, and the numerical results have also been validated by experimental data. It is shown that the long-shore current velocity and wave set-up increase with the increasing incident wave amplitude and slope steepness of the shore plane ; the wave set-up increases with the in- creasing incident wave period;and the pollutant morement proceeds more quiekly with the increasing incident wave amplitude and slope steepness of the shore palane. In surf zones, the long-shore currents induced by the inclined incident waves have effectively affected the pollutant movement.
文摘An efficient numerical model for wave refraction, diffraction and reflection is presented in this paper. In the model the modified time-dependent mild-slope equation is transformed into an evolution equation and an improved ADI method involving a relaxation factor is adopted to solve it. The method has the advantage of improving the numerical stability and convergence rate by properly determining the relaxation factor. The range of the relaxation factor making the differential scheme unconditionally stable is determined by stability analysis. Several verifications are performed to examine the accuracy of the present model. The numerical results coincide with the analytic solutions or experimental data very well and the computer time is reduced.
基金This researchis supported by the Science Council of Taiwan (Grant No. NSC94-2611-E-172-001)
文摘A numerical model, Evolution Equation of Mild-Slope Equation (EEMSE) developed by Hsu et al. (2003), was applied to study the Bragg reflection of water waves over a series of rectangular seabed. Three key parameters of the Bragg reflection including the peak coefficient of primary Bragg reflection, its corresponding relative wavelength, and the bandwidth, have shown to be effective in describing the characteristics of the primary Bragg reflection. The characteristics of the Bragg reflection were investigated under the various conditions comprising number, height, and spacing interval of a series of rectangular seabed. The results reveal that the peak of Bragg reflection increases with the increase of rectangular seabed height and number, the bandwidth and the shift value of the Bragg reflection depend on the increase of the rectangular seabed height as well as the decrease of rectangular seabed number, and the relative rectangular seabed spacing in the rang of 3 and 4 could produce higher Bragg reflection. Finally, a correlative and regressive analysis is performed by use of the calculated data. Based on the results of the analysis, empirical equations were established. Our study results can provide an appropriate choice of a series of rectangular seabed field for a practical design.
文摘Nonlinear effect is of importance to waves propagating from deep water to shallow water. The non-linearity of waves is widely discussed due to its high precision in application. But there are still some problems in dealing with the nonlinear waves in practice. In this paper, a modified form of mild-slope equation with weakly nonlinear effect is derived by use of the nonlinear dispersion relation and the steady mild-slope equation containing energy dissipation. The modified form of mild-slope equation is convenient to solve nonlinear effect of waves. The model is tested against the laboratory measurement for the case of a submerged elliptical shoal on a slope beach given by Berkhoff et al. The present numerical results are also compared with those obtained through linear wave theory. Better agreement is obtained as the modified mild-slope equation is employed. And the modified mild-slope equation can reasonably simulate the weakly nonlinear effect of wave propagation from deep water to coast.
基金This project was supported by the National Outstanding Youth Science Foundation of China under contract! No. 49825161.
文摘A time-dependent mild-slope equation for the extension of the classic mild-slope equation of Berkhoff is developed for the interactions of large ambient currents and waves propagating over an uneven bottom, using a Hamiltonian formulation for irrotational motions. The bottom topography consists of two components the slowly varying component which satisfies the mild-slope approximation, and the fast varying component with wavelengths on the order of the surface wavelength but amplitudes which scale as a small parameter describing the mild-slope condition. The theory is more widely applicable and contains as special cases the following famous mild-slope type equations: the classical mild-Slope equation, Kirby's extended mild-slope equation with current, and Dingemans's mild-slope equation for rippled bed. Finally, good agreement between the classic experimental data concerning Bragg reflection and the present numerical results is observed.
文摘The present work analyzes the interaction of oblique waves by a porous flexible breakwater in the presence of a step-type bottom.The physical models for both scattering and trapping cases are considered and developed within the framework of small amplitude water-wave theory.Darcy’s law is used to model the wave interaction with the porous medium.It is assumed that the varying bottom extends over a finite interval,connected by a finite length of uniform bottom near an impermeable wall,and a semi-infinite length of bottom in the open water region.The boundary value problem is solved using the eigenfunction expansion method in the uniform bottom regions,while a modified mild-slope equation(MMSE)is used for the region with the varying bottom.Additionally,a mass-conserving jump condition is employed to handle the solution at slope discontinuities in the bottom.A system of equations is derived by matching the solutions at interfaces.The reflection coefficient and force on the breakwater and impermeable wall are plotted and analyzed for various parameters,such as the length of the varying bottom,depth ratio,angle of incidence,and flexural rigidity.It is observed that moderate values of flexural rigidity and depth ratio significantly contribute to an optimum reflection coefficient and reduce the wave force on the wall and breakwater.Remarkably,the outcomes of this study are assumed to be applicable in the construction of this type of breakwater in coastal regions.
基金supported by the National Basic Research Program of China ( Grant No.2006CB403302)the National Natural Science Foundation of China (Grant Nos .50839001 and 50709004)the Scientific Research Foundation of the Higher Education Institutions of Liaoning Province (Grant No.2006T018)
文摘The mild-slope equation is familiar to coastal engineers as it can effectively describe wave propagation in nearshore regions. However, its computational method in Cartesian coordinates often renders the model inaccurate in areas with irregular shorelines, such as estuaries and harbors. Based on the hyperbolic mild-slope equation in Cartesian coordinates, the numerical model in orthogonal curvilinear coordinates is developed. The transformed model is discretized by the finite difference method and solved by the ADI method with space-staggered grids. The numerical predictions in curvilinear co- ordinates show good agreemenl with the data obtained in three typical physical expedments, which demonstrates that the present model can be used to simulate wave propagation, for normal incidence and oblique incidence, in domains with complicated topography and boundary conditions.
基金This research is supported by the National Science Council of Taiwan under the grant of NSC 86-2611-E-006-019.
文摘The purpose of this paper is to extend the validity of Li's parabolic model (1994) by incorporating a combined energy factor in the mild-slope equation and by improving the traditional radiation boundary conditions. With wave breaking and energy dissipation expressed in a direct form in the equation, the proposed model could provide an efficient numerical scheme and accurate predictions of wave transformation across the surf zone. The radiation boundary conditions are iterated in the model without use of approximations. The numerical predictions for wave height distributions across the surf zone are compared with experimental data over typical beach profiles. In addition, tests of waves scattering around a circular pile show that the proposed model could also provide reasonable improvement on the radiation boundary conditions for large incident angles of waves.
基金This subject was financially supported by the National Natural Science Foundation of China(Grant No. 59839330 and No.59976047) by the Visiting Scholal Foundation of State Key Hydraulic Lab.of High Speed Flows of Dalian University of Technology.
文摘The original hyperbolic mild-slope equation can effectively take into account the combined effects of wave shoaling, refraction, diffraction and reflection, but does not consider the nonlinear effect of waves, and the existing numerical schemes for it show some deficiencies. Based on the original hyperbolic mild-slope equation, a nonlinear dispersion relation is introduced in present paper to effectively take the nonlinear effect of waves into account and a new numerical scheme is proposed. The weakly nonlinear dispersion relation and the improved numerical scheme are applied to the simulation of wave transformation over an elliptic shoal. Numerical tests show that the improvement of the numerical scheme makes efficient the solution to the hyperbolic mild-slope equation, A comparison of numerical results with experimental data indicates that the results obtained by use of the new scheme are satisfactory.
基金supported by the National Natural Science Foundation of China(Grant No.51979029)。
文摘Vessels with semi-closed tanks(i.e.,well docks)are widely applied in the military operation and maritime engineer-ing.The water is bound by the semi-closed floating tank and forced by both the incident waves and ship’s motions.The free surface oscillations inside the flooded well dock is thus distinctive and very complicated.So far,the natural modes of semi-closed floating tanks have not yet been studied.This paper investigates the characteristics of natural modes of a floating semi-closed tank by combining a mode-resolving model based on mild-slope equations and a hydrodynamic model based on computational fluid dynamics.Results show that the first three natural periods(i.e.,74,23.6,and 14 s)of the tank fall into the band of swell and infragravity waves and they could be triggered under certain circumstance.Multi-period free surface oscillations are observed inside the tank,including the longest natural period(i.e.,74 s),though the incident waves are monochromatic.A possible generation mechanism for the long-period mode is explained on the basis of liquid sloshing and harbor oscillations.Moreover,a long-period component with a period close to the natural mode of well dock is observed in the ship motions,which is generated by the interaction between the waves and ship.
基金supported by the National Natural Science Foundation of China (Grant Nos. 50839001 and 50979036)
文摘Researches on breaking-induced currents by waves are summarized firstly in this paper. Then, a combined numerical model in orthogonal curvilinear coordinates is presented to simulate wave-induced current in areas with curved boundary or irregular coastline. The proposed wave-induced current model includes a nearshore current module established through orthogonal curvilinear transformation form of shallow water equations and a wave module based on the curvilinear parabolic approximation wave equation. The wave module actually serves as the driving force to provide the current module with required radiation stresses. The Crank-Nicolson finite difference scheme and the alternating directions implicit method are used to solve the wave and current module, respectively. The established surf zone currents model is validated by two numerical experiments about longshore currents and rip currents in basins with rip channel and breakwater. The numerical results are compared with the measured data and published numerical results.
基金supported by the Central Public-Interest Scientific Institution Basal Research Fund of China(Grant No.TKS100108)
文摘The split-step pseudo-spectral method is a useful method for solving nonlinear wave equations. However, it is not widely used because of the limitation of the periodic boundary condition. In this paper, the method is modified at its second step by avoiding transforming the wave height function into a frequency domain function. Thus, the periodic boundary condition is not required, and the new method is easy to implement. In order to validate its performance, the proposed method was used to solve the nonlinear parabolic mild-slope equation and the spatial modified nonlinear Schrodinger (MNLS) equation, which were used to model the wave propagation under different bathymetric conditions. Good agreement between the numerical and experimental results shows that the present method is effective and efficient in solving nonlinear wave eouations.
文摘Starting from the widespread phenomena of porous bottoms in the near shore region, considering fully the diversity of bottom topography and wave number variation, and including the effect of evanescent modes, a general linear wave theory for water waves propagating over uneven porous bottoms in the near shore region is established by use of Green's second identity. This theory can be reduced to a number of the most typical mild-slope equations currently in use and provide a reliable research basis for follow-up development of nonlinear water wave theory involving porous bottoms.
基金This subject was financially supported by the National Natural Science Foundation of China(Grant No.59839330 and No.49910161985)
文摘A new method for the calculation of wave radiation stress is proposed by linking the expressions for wave radiation stress with the variables in the parabolic mild slope equation. The governing equations are solved numerically by the finite difference method. Numerical results show that the new method is accurate enough, can be efficiently solved with little programming effort, and can be applied to the calculation of wave radiation stress for large coastal areas.
文摘On the assumption that the vortex and the vertical velocity component of the current are small, a mild-slope equation for wave propagation on non-uniform flows is deduced from the basic hydrodynamic equations, with the terms of (V(h)h)(2) and V(h)(2)h included in the equation. The terms of bottom friction, wind energy input and wave nonlinearity are also introduced into the equation. The wind energy input functions for wind waves and swells are separately considered by adopting Wen's (1989) empirical formula for wind waves and Snyder's observation results for swells. Thus, an extended mild-slope equation is obtained, in which the effects of refraction, diffraction, reflection, current, bottom friction, wind energy input and wave nonlinearity are considered synthetically.
基金This work wasjointlysupported by the National Natural Science Foundation of China(Grant No.40106008) the National Natural Science Fundfor Distinguished Young Scholars(Grant No.40225014)
文摘A finite-difference approach is used to develop a time-dependent mild-slope equation incorporating the effects of bottom dissipation and nonlinearity. The Enler predietor-corrector method and the three-point finite-difference method with varying spatial steps are adopted to discretize the time derivatives and the two-dimensional horizontal ones, respectively, thus leading both the time and spatial derivatives to the second-order accuracy. The boundary conditions for the present model are treated on the basis of the general conditions for open and fixed boundaries with an arbitrary reflection coefficient and phase shift. Both the linear and nonlinear versions of the numerical model are applied to the wave propagation and transformation over an elliptic shoal on a sloping beach, respectively, and the linear version is applied to the simulation of wave propagation in a fully open rectangular harbor. From comparison of numerical results with theoretical or experimental ones, it is found that they are in reasonable agreement.
文摘In this paper, the Poussinesq equations and mild-slope equation of wave transformation in near-shore shallow water were introduced and the characteristics of the two forms of equations were compared and analyzed. Meanwhile, a Boussinesq wave model which includes effects of bottom friction, wave breaking and subgrid turbulent mixing is established, slot technique dealing with moving boundary and damping layer dealing with absorbing boundary were estab lished. By adopting empirical nonlinear dispersion relation and including nonlinear term, the mild-slope equation model was modified to take nonlinear effects into account. The two types of models were validated with the experiment results given by Berkhoff and their accuracy was analysed and compared with that of correlated methods.