AIM: To investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on growth of gastric cancer and its possible mechanism. METHODS: Heterotopic tumors were induced by subcutaneously injection of SGC-7901 ce...AIM: To investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on growth of gastric cancer and its possible mechanism. METHODS: Heterotopic tumors were induced by subcutaneously injection of SGC-7901 cells in nude mice. Tumor growth was measured by calipers in two dimensions. Tumor angiogenesis was determined with tumor microvessel density (MVD) by immunohistology. Vascular endothelial growth factor (VEGF) protein level and activation of signal transducer and activator of transcription 3 (Star3) were examined by Western blotting. VEGF mRNA expression was determined by RT-PCR and VEGF release in tumor culture medium by ELISA. VEGF-induced cell proliferation was studied by MTT assay, cell migration by gelatin modified Boyden chamber (Transwell) and in vitro angiogenesis by endothelial tube formation in Matrigel. RESULTS: Intraperitoneal injection of EGCG inhibited the growth of gastric cancer by 60.4%. MVD in tumor tissues treated with EGCG was markedly reduced. EGCG treatment reduced VEGF protein level in vitro and in vivo. Secretion and mRNA expression of VEGF in tumor cells were also suppressed by EGCG in a dose-dependent manner. This inhibitory effect was associated with reduced activation of Star3, but EGCG treatment did not change the total Star3 expression. EGCG also inhibited VEGF-induced endothelial cell proliferation, migration and tube formation. CONCLUSION: EGCG inhibits the growth of gastric cancer by reducing VEGF production and angiogenesis, and is a promising candidate for anti-angiogenic treatment of gastric cancer.展开更多
AIM:To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27Kip1 in them,and further determine whether the e...AIM:To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27Kip1 in them,and further determine whether the effects are related to the PI3K/Akt signal transduction pathway. METHODS:Gastric cancer MGC-803 cells were cultured and then treated with 50 μg/L recombinant human MIF (rhMIF) with and without a PI3K inhibitor,LY294002 (25 μmol/L). MTT assay was used to detect the prolifer-ation of MGC-803 cells. Cell cycle was detected by flow cytometry. Expression of cyclin D1 and p27Kip1 mRNA was by reverse transcription-polymerase chain reaction. Protein expression of phosphorylated Akt (p-Akt),Akt,cyclin D1 and p27Kip1 was examined by immunocyto-chemistry and Western blotting. RESULTS:rhMIF signifi cantly stimulated the prolifera-tion of MGC-803 cells and cell cycle progression from G1 phase to S phase in a concentration-and time-de-pendent manner. After the MGC-803 cells were treated with rhMIF for 24 h,the expression of cyclin D1 was signifi cantly up-regulated compared with the cells not treated with rhMIF at both mRNA and protein levels(0.97 ± 0.02 vs 0.74 ± 0.01,P = 0.002; 0.98 ± 0.05 vs 0.69 ± 0.04,P = 0.003). The p27Kip1 was down-regulated but only statistically significant at the protein level. rhMIF significantly increased the expression of p-Akt,which reached the peak at 30 min,but did not affect the expression of Akt. However,LY294002 inhibited all the effects of rhMIF.CONCLUSION:Macrophage MIF increases the proliferation of gastric cancer cells,induces the expression of cyclin D1 at the transcriptional level and inhibits the expression of p27Kip1 at the post-transcriptional level via the PI3K/Akt pathway.展开更多
基金Supported by the grants from the National Natural Science Foundation of China, No. 30571833the Natural Science Foundation of Guangdong Province, China, No. 05001785
文摘AIM: To investigate the effect of (-)-epigallocatechin-3-gallate (EGCG) on growth of gastric cancer and its possible mechanism. METHODS: Heterotopic tumors were induced by subcutaneously injection of SGC-7901 cells in nude mice. Tumor growth was measured by calipers in two dimensions. Tumor angiogenesis was determined with tumor microvessel density (MVD) by immunohistology. Vascular endothelial growth factor (VEGF) protein level and activation of signal transducer and activator of transcription 3 (Star3) were examined by Western blotting. VEGF mRNA expression was determined by RT-PCR and VEGF release in tumor culture medium by ELISA. VEGF-induced cell proliferation was studied by MTT assay, cell migration by gelatin modified Boyden chamber (Transwell) and in vitro angiogenesis by endothelial tube formation in Matrigel. RESULTS: Intraperitoneal injection of EGCG inhibited the growth of gastric cancer by 60.4%. MVD in tumor tissues treated with EGCG was markedly reduced. EGCG treatment reduced VEGF protein level in vitro and in vivo. Secretion and mRNA expression of VEGF in tumor cells were also suppressed by EGCG in a dose-dependent manner. This inhibitory effect was associated with reduced activation of Star3, but EGCG treatment did not change the total Star3 expression. EGCG also inhibited VEGF-induced endothelial cell proliferation, migration and tube formation. CONCLUSION: EGCG inhibits the growth of gastric cancer by reducing VEGF production and angiogenesis, and is a promising candidate for anti-angiogenic treatment of gastric cancer.
基金Supported by Grant from Hunan Provincial Science and Technology Department (2008 FJ 3088), China
文摘AIM:To investigate the effects of macrophage migration inhibitory factor (MIF) on proliferation of human gastric cancer MGC-803 cells and expression of cyclin D1 and p27Kip1 in them,and further determine whether the effects are related to the PI3K/Akt signal transduction pathway. METHODS:Gastric cancer MGC-803 cells were cultured and then treated with 50 μg/L recombinant human MIF (rhMIF) with and without a PI3K inhibitor,LY294002 (25 μmol/L). MTT assay was used to detect the prolifer-ation of MGC-803 cells. Cell cycle was detected by flow cytometry. Expression of cyclin D1 and p27Kip1 mRNA was by reverse transcription-polymerase chain reaction. Protein expression of phosphorylated Akt (p-Akt),Akt,cyclin D1 and p27Kip1 was examined by immunocyto-chemistry and Western blotting. RESULTS:rhMIF signifi cantly stimulated the prolifera-tion of MGC-803 cells and cell cycle progression from G1 phase to S phase in a concentration-and time-de-pendent manner. After the MGC-803 cells were treated with rhMIF for 24 h,the expression of cyclin D1 was signifi cantly up-regulated compared with the cells not treated with rhMIF at both mRNA and protein levels(0.97 ± 0.02 vs 0.74 ± 0.01,P = 0.002; 0.98 ± 0.05 vs 0.69 ± 0.04,P = 0.003). The p27Kip1 was down-regulated but only statistically significant at the protein level. rhMIF significantly increased the expression of p-Akt,which reached the peak at 30 min,but did not affect the expression of Akt. However,LY294002 inhibited all the effects of rhMIF.CONCLUSION:Macrophage MIF increases the proliferation of gastric cancer cells,induces the expression of cyclin D1 at the transcriptional level and inhibits the expression of p27Kip1 at the post-transcriptional level via the PI3K/Akt pathway.