Ba 1 x Dy x Co 2 Fe 16 O 27 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) was prepared by the solid-state method. The phase structure was studied using powder X-ray diffraction (XRD), the electromagnetic properties were ...Ba 1 x Dy x Co 2 Fe 16 O 27 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) was prepared by the solid-state method. The phase structure was studied using powder X-ray diffraction (XRD), the electromagnetic properties were measured, and the reflection loss of Dy 3+ -doped ferrite material was calculated using electromagnetic parameters by the transmission line theory. All XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x ≤ 0.15. The values of ε ′ and ε ″ increased slightly with Dy 3+ ions doping. The values of μ″ and μ′ were improved with Dy 3+ doping, exhibiting excellent microwave magnetic performance. The reasons have also been discussed using the electromagnetic theory. Dy substitution could increase microwave-absorbing performance and broaden frequency band (reflection loss (RL) -10 dB), and the absorbing peak shifted to high-frequency position. When x = 0.2, ferrite layer exhibited the most excellent microwave-absorbing performance at a thin matching thickness of 1.5 mm. The peak value of RL was around -15 dB, and the frequency band (RL -10 dB) was about 7 GHz (from 8 to 15 GHz).展开更多
Barium hexaferrites doped with Er3+, Ba1-xErxFe12O19, x=0.0, 0.01, 0.02, 0.04, 0.06, were prepared by the conventional ceramic technology. The structure and electromagnetic properties of the calcined samples were stud...Barium hexaferrites doped with Er3+, Ba1-xErxFe12O19, x=0.0, 0.01, 0.02, 0.04, 0.06, were prepared by the conventional ceramic technology. The structure and electromagnetic properties of the calcined samples were studied using powder X-ray diffraction (XRD) and network analyzer (Agilent 8722ET). All the XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x is below 0.02. The lattice parameters of ferrites doped with Er3+ decreased, indicating that the substitution of Er3+ occurs on Ba2+ basis site and results in a contract of the crystal cell. The microwave electromagnetic properties of the samples have been studied at the frequency range from 2 to 18 GHz. It was shown that ε′ increased slightly, and the maximum of ε″ appeared at low frequency position with Er3+ doping. μ″ and μ′ were improved significantly when x=0.01, and the maxima are 2 and 1.7, respectively. The reasons were also discussed using electromagnetic theory.展开更多
Carbonyl-iron/Fe91Si9 composites for thin microwave absorbers were firstly prepared by a simple blending technique. The patterns of carbonyl-iron and Fe91Si9 were characterized by scanning electron microscope (SEM). T...Carbonyl-iron/Fe91Si9 composites for thin microwave absorbers were firstly prepared by a simple blending technique. The patterns of carbonyl-iron and Fe91Si9 were characterized by scanning electron microscope (SEM). The complex permittivity, permeability and microwave absorption properties of the composites were studied in the frequency range of 2 - 7GHz by a HP8720B vector network analyzer. Complex permittivity and permeability decrease gradually with increasing weight percentage of Fe91Si9 in the composites, the variation of permittivity was very large but the variation of permeability was very small. The composites exhibited excellent microwave absorption properties with increasing Fe91Si9 content. The reflection loss (RL) values less than –20 dB were obtained in the 3.7 - 6.7 GHz frequency range for the paraffin matrix composites with 80 wt% carbonyl-iron/Fe91Si9 powders (weight ratio of carbonyl-iron to Fe91Si9 was 1:1), with thickness of 4.0 - 2.4 mm, respectively. The optimal RL of –45 dB was observed at 5.2 GHz with a matching thickness (dm) of 3.0 mm. The excellent microwave absorption properties were attributed to a better electromagnetic impedance match and a higher electric resistivity.展开更多
基金the University Natural Science Fund of Jiangsu Province, China (No. 10KJB430008)the Advanced Project of the General Reserve Department of PLA for the financial support
文摘Ba 1 x Dy x Co 2 Fe 16 O 27 (x = 0.00, 0.05, 0.10, 0.15, and 0.20) was prepared by the solid-state method. The phase structure was studied using powder X-ray diffraction (XRD), the electromagnetic properties were measured, and the reflection loss of Dy 3+ -doped ferrite material was calculated using electromagnetic parameters by the transmission line theory. All XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x ≤ 0.15. The values of ε ′ and ε ″ increased slightly with Dy 3+ ions doping. The values of μ″ and μ′ were improved with Dy 3+ doping, exhibiting excellent microwave magnetic performance. The reasons have also been discussed using the electromagnetic theory. Dy substitution could increase microwave-absorbing performance and broaden frequency band (reflection loss (RL) -10 dB), and the absorbing peak shifted to high-frequency position. When x = 0.2, ferrite layer exhibited the most excellent microwave-absorbing performance at a thin matching thickness of 1.5 mm. The peak value of RL was around -15 dB, and the frequency band (RL -10 dB) was about 7 GHz (from 8 to 15 GHz).
基金the National Defence Fundamental Research Project and the Doctor Innovation Fund of NJUT(BSCX200603)
文摘Barium hexaferrites doped with Er3+, Ba1-xErxFe12O19, x=0.0, 0.01, 0.02, 0.04, 0.06, were prepared by the conventional ceramic technology. The structure and electromagnetic properties of the calcined samples were studied using powder X-ray diffraction (XRD) and network analyzer (Agilent 8722ET). All the XRD patterns showed the single phase of the magnetoplumbite barium ferrite without other intermediate phase when x is below 0.02. The lattice parameters of ferrites doped with Er3+ decreased, indicating that the substitution of Er3+ occurs on Ba2+ basis site and results in a contract of the crystal cell. The microwave electromagnetic properties of the samples have been studied at the frequency range from 2 to 18 GHz. It was shown that ε′ increased slightly, and the maximum of ε″ appeared at low frequency position with Er3+ doping. μ″ and μ′ were improved significantly when x=0.01, and the maxima are 2 and 1.7, respectively. The reasons were also discussed using electromagnetic theory.
文摘Carbonyl-iron/Fe91Si9 composites for thin microwave absorbers were firstly prepared by a simple blending technique. The patterns of carbonyl-iron and Fe91Si9 were characterized by scanning electron microscope (SEM). The complex permittivity, permeability and microwave absorption properties of the composites were studied in the frequency range of 2 - 7GHz by a HP8720B vector network analyzer. Complex permittivity and permeability decrease gradually with increasing weight percentage of Fe91Si9 in the composites, the variation of permittivity was very large but the variation of permeability was very small. The composites exhibited excellent microwave absorption properties with increasing Fe91Si9 content. The reflection loss (RL) values less than –20 dB were obtained in the 3.7 - 6.7 GHz frequency range for the paraffin matrix composites with 80 wt% carbonyl-iron/Fe91Si9 powders (weight ratio of carbonyl-iron to Fe91Si9 was 1:1), with thickness of 4.0 - 2.4 mm, respectively. The optimal RL of –45 dB was observed at 5.2 GHz with a matching thickness (dm) of 3.0 mm. The excellent microwave absorption properties were attributed to a better electromagnetic impedance match and a higher electric resistivity.