The exploration and development of oil and gas resources have shifted from shallow to deep and ultradeep.The difficulty of rock breaking has also increased,introducing new challenges to traditional rock-breaking techn...The exploration and development of oil and gas resources have shifted from shallow to deep and ultradeep.The difficulty of rock breaking has also increased,introducing new challenges to traditional rock-breaking technology.Hence,there is an urgent need to develop new rock-breaking technologies to improve the development efficiency of deep oil and gas resources.Therefore,this study focused on the new microwave rock-breaking technology and conducted experimental and numerical simulation research on typical deep,hard rock granite.The research results showed that granite in the microwave field exhibited high-temperature melting and fracture,and the highest temperature could reach 550°C.Under the irradiation of circulating microwaves,a minimum irradiation time threshold of 3 min was needed to cause irreversible damage to the rock.The numerical simulation results showed that the interaction of thermal stress and in situ stress would cause the inside of the rock stratum to separate into a disturbed deterioration area,disturbed unloading area and initial stress area.These results are expected to provide the necessary technical guidance and theoretical support for the research and development of high-efficiency rock-breaking drilling for deep hard rock.展开更多
The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the en...The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.展开更多
基金financially supported by National Natural Science Foundation of China(U2013603,52004167)Program for Guangdong Introducing Innovative and Enterpreneurial Teams(No.2019ZT08G315)China Postdoctoral Science Foundation(2021T140485)
文摘The exploration and development of oil and gas resources have shifted from shallow to deep and ultradeep.The difficulty of rock breaking has also increased,introducing new challenges to traditional rock-breaking technology.Hence,there is an urgent need to develop new rock-breaking technologies to improve the development efficiency of deep oil and gas resources.Therefore,this study focused on the new microwave rock-breaking technology and conducted experimental and numerical simulation research on typical deep,hard rock granite.The research results showed that granite in the microwave field exhibited high-temperature melting and fracture,and the highest temperature could reach 550°C.Under the irradiation of circulating microwaves,a minimum irradiation time threshold of 3 min was needed to cause irreversible damage to the rock.The numerical simulation results showed that the interaction of thermal stress and in situ stress would cause the inside of the rock stratum to separate into a disturbed deterioration area,disturbed unloading area and initial stress area.These results are expected to provide the necessary technical guidance and theoretical support for the research and development of high-efficiency rock-breaking drilling for deep hard rock.
基金financially supported by the National Key R&D Program of China (No.2018YFC1900500)the National Natural Science Foundation of China (No.51961020)+1 种基金the Key Technology Research and Industrialization Application Demonstration Project of the Renewable Multi-energy Complementary (No.2018IB020)the Academician Workstation of Kefa Cen (No.2018IC085)。
文摘The preparation of functional material titanium carbide by the carbothermal reduction of Ti-bearing blast furnace slag with microwave heating is an effective method for valuable metals recovery;it can alleviate the environmental pressure caused by slag stocking.The dynamic dielectric parameters of Ti-bearing blast furnace slag/pulverized coal mixture under high-temperature heating are measured by the cylindrical resonant cavity perturbation method.Combining the transient dipole and large π bond delocalization polarization phenomena, the interaction mechanism of the microwave macroscopic non-thermal effect on the titanium carbide synthesis reaction was revealed.The material thickness range during microwave heating was optimized by the joint analysis of penetration depth and reflection loss, which is of great significance to the design of the microwave reactor for the carbothermal reduction of Ti-bearing blast furnace slag.