Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu- bule-associated protein 1B mediation of...Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu- bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi- tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERKI/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro- tubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.展开更多
Objective:To study the effect of maternal BDE-209 (brominated Diphenyl Ethers-209)exposure on the expression of microtubule-associated protein-1b (map-1b) and S-100 in rat's hippocampus of the offspring by RT-PCR....Objective:To study the effect of maternal BDE-209 (brominated Diphenyl Ethers-209)exposure on the expression of microtubule-associated protein-1b (map-1b) and S-100 in rat's hippocampus of the offspring by RT-PCR.Methods:Peanut oil suspensions of commercial deca-BDE was given in dose of 300 mg/(kg·d) by oral gavage throughout gestation and lactation in experimental group.The control group was administered only with the same capacity of peanut oil at the same time.The expression of MAP-1B in the hippocampus of the offspring's rats were tested when the pups were newborn,7days,14 days,21days and 45days old respectively by means of RT-PCR.Result:MAP-1B protein showed a statistically significantly lower concentration in the groups 14 days,21days,45days than that of the control groups.The expression of S-100 in the group which received with deca-BDE by RT-PCR showed higher than that of control groups.But only the 45days groups had significant difference of expression of MAP-1B protein compared with the control groups(P<0.05).Conclusions:Maternal BDE-209 exposure during the period of pregnancy will diminish the expression of map-1b protein in hippocampus of offspring's rats.展开更多
微管相关蛋白1B(microtubule associated protein 1B,MAP1B)是神经细胞骨架蛋白的重要成分,广泛表达于中枢及外周神经系统,分布于神经元胞体、轴突、树突和突触部位,可以调节微管动力学状态并促进微管聚合成束,对轴突导向、延长及突触...微管相关蛋白1B(microtubule associated protein 1B,MAP1B)是神经细胞骨架蛋白的重要成分,广泛表达于中枢及外周神经系统,分布于神经元胞体、轴突、树突和突触部位,可以调节微管动力学状态并促进微管聚合成束,对轴突导向、延长及突触发育起重要作用。本文对MAP1B的基因、生物化学特性、磷酸化调节、轴突导向作用、突触塑型作用及其与神经系统疾病的关系进行综述。展开更多
In this review, we discuss the role of microtubule-associated protein 1 B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during...In this review, we discuss the role of microtubule-associated protein 1 B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAPIB in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.展开更多
BACKGROUND Pancreatic cancer is a highly invasive malignant tumor. Expression levels of the autophagy-related protein microtubule-associated protein 1 A/1 B-light chain 3(LC3) and perineural invasion(PNI) are closely ...BACKGROUND Pancreatic cancer is a highly invasive malignant tumor. Expression levels of the autophagy-related protein microtubule-associated protein 1 A/1 B-light chain 3(LC3) and perineural invasion(PNI) are closely related to its occurrence and development. Our previous results showed that the high expression of LC3 was positively correlated with PNI in the patients with pancreatic cancer. In this study, we further searched for differential genes involved in autophagy of pancreatic cancer by gene expression profiling and analyzed their biological functions in pancreatic cancer, which provides a theoretical basis for elucidating the pathophysiological mechanism of autophagy in pancreatic cancer and PNI.AIM To identify differentially expressed genes involved in pancreatic cancer autophagy and explore the pathogenesis at the molecular level.METHODS Two sets of gene expression profiles of pancreatic cancer/normal tissue(GSE16515 and GSE15471) were collected from the Gene Expression Omnibus.Significance analysis of microarrays algorithm was used to screen differentially expressed genes related to pancreatic cancer. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were used to analyze the functional enrichment of the differentially expressed genes. Protein interaction data containing only differentially expressed genes was downloaded from String database and screened. Module mining was carried out by Cytoscape software and ClusterOne plug-in. The interaction relationship between the modules was analyzed and the pivot nodes between the functional modules were determined according to the information of the functional modules and the data of reliable protein interaction network.RESULTS Based on the above two data sets of pancreatic tissue total gene expression, 6098 and 12928 differentially expressed genes were obtained by analysis of genes with higher phenotypic correlation. After extracting the intersection of the two differential gene sets, 4870 genes were determined. GO a展开更多
BACKGROUND Colorectal cancer(CRC) is one of the main causes of cancer-related deaths in China and around the world. Advanced CRC(ACRC) patients suffer from a low cure rate though treated with targeted therapies. The r...BACKGROUND Colorectal cancer(CRC) is one of the main causes of cancer-related deaths in China and around the world. Advanced CRC(ACRC) patients suffer from a low cure rate though treated with targeted therapies. The response rate is about 50% to chemotherapy and cetuximab, a monoclonal antibody targeting epidermal growth factor receptor(EGFR) and used for ACRC with wild-type KRAS. It is important to identify more predictors of cetuximab efficacy to further improve precise treatment. Autophagy, showing a key role in the cancer progression, is influenced by the EGFR pathway. Whether autophagy can predict cetuximab efficacy in ACRC is an interesting topic.AIM To investigate the effect of autophagy on the efficacy of cetuximab in colon cancer cells and ACRC patients with wild-type KRAS.METHODS ACRC patients treated with cetuximab plus chemotherapy, with detailed data and tumor tissue, at Sun Yat-sen University Cancer Center from January 1, 2005,to October 1, 2015, were studied. Expression of autophagy-related proteins[Beclin1, microtubule-associated protein 1 A/B-light chain 3(LC3), and 4 Ebinding protein 1(4 E-BP1)] was examined by Western blot in CRC cells and by immunohistochemistry in cancerous and normal tissues. The effect of autophagy on cetuximab-treated cancer cells was confirmed by MTT assay. The associations between Beclin1, LC3, and 4 E-BP1 expression in tumor tissue and the efficacy of cetuximab-based therapy were analyzed.RESULTS In CACO-2 cells exposed to cetuximab, LC3 and 4 E-BP1 were upregulated, and P62 was downregulated. Autophagosome formation was observed, and autophagy increased the efficacy of cetuximab. In 68 ACRC patients,immunohistochemistry showed that Beclin1 levels were significantly correlated with those of LC3(0.657, P < 0.001) and 4 E-BP1(0.211, P = 0.042) in ACRC tissues.LC3 was significantly overexpressed in tumor tissues compared to normal tissues(P < 0.001). In 45 patients with wild-type KRAS, the expression levels of these three proteins were not related to progression-free survi展开更多
基金supported by the National Natural Science Foundation of China,No.81350013,81250016the Youth Science Project of National Natural Science Foundation of China,No.81301289the Youth Scientific Research Project of Jilin Provincial Science and Technology Development Plan,No.20130522032JH,20130522039JH
文摘Microtubule-associated protein 1B plays an important role in axon guidance and neuronal migration. In the present study, we sought to discover the mechanisms underlying microtu- bule-associated protein 1B mediation of axon guidance and neuronal migration. We exposed bone marrow mesenchymal stem cells to okadaic acid or N-acetyl-D-erythro-sphingosine (an inhibitor and stimulator, respectively, of protein phosphatase 2A) for 24 hours. The expression of the phosphorylated form of type I microtubule-associated protein 1B in the cells was greater after exposure to okadaic acid and lower after N-acetyl-D-erythro-sphingosine. We then injected the bone marrow mesenchymal stem cells through the ear vein into rabbit models of spinal cord contusion. The migration of bone marrow mesenchymal stem cells towards the injured spinal cord was poorer in cells exposed to okadaic acid- and N-acetyl-D-erythro-sphingosine than in non-treated bone marrow mesenchymal stem cells. Finally, we blocked phosphatidylinosi- tol 3-kinase (PI3K) and extracellular signal-regulated kinase 1/2 (ERK1/2) pathways in rabbit bone marrow mesenchymal stem cells using the inhibitors LY294002 and U0126, respectively. LY294002 resulted in an elevated expression of phosphorylated type I microtubule-associated protein 1B, whereas U0126 caused a reduction in expression. The present data indicate that PI3K and ERKI/2 in bone marrow mesenchymal stem cells modulate the phosphorylation of micro- tubule-associated protein 1B via a cross-signaling network, and affect the migratory efficiency of bone marrow mesenchymal stem cells towards injured spinal cord.
文摘Objective:To study the effect of maternal BDE-209 (brominated Diphenyl Ethers-209)exposure on the expression of microtubule-associated protein-1b (map-1b) and S-100 in rat's hippocampus of the offspring by RT-PCR.Methods:Peanut oil suspensions of commercial deca-BDE was given in dose of 300 mg/(kg·d) by oral gavage throughout gestation and lactation in experimental group.The control group was administered only with the same capacity of peanut oil at the same time.The expression of MAP-1B in the hippocampus of the offspring's rats were tested when the pups were newborn,7days,14 days,21days and 45days old respectively by means of RT-PCR.Result:MAP-1B protein showed a statistically significantly lower concentration in the groups 14 days,21days,45days than that of the control groups.The expression of S-100 in the group which received with deca-BDE by RT-PCR showed higher than that of control groups.But only the 45days groups had significant difference of expression of MAP-1B protein compared with the control groups(P<0.05).Conclusions:Maternal BDE-209 exposure during the period of pregnancy will diminish the expression of map-1b protein in hippocampus of offspring's rats.
文摘微管相关蛋白1B(microtubule associated protein 1B,MAP1B)是神经细胞骨架蛋白的重要成分,广泛表达于中枢及外周神经系统,分布于神经元胞体、轴突、树突和突触部位,可以调节微管动力学状态并促进微管聚合成束,对轴突导向、延长及突触发育起重要作用。本文对MAP1B的基因、生物化学特性、磷酸化调节、轴突导向作用、突触塑型作用及其与神经系统疾病的关系进行综述。
基金supported by the National Natural Science Foundation of China(Establishment of corticospinal tract ischemic injury model in goat and axonal guidance of microtubule-associated protein 1B in bone marrow-derived mesenchymal stem cells migration in the spinal cord),No. 30972153
文摘In this review, we discuss the role of microtubule-associated protein 1 B (MAP1B) and its phosphorylation in axonal development and regeneration in the central nervous system. MAP1B exhibits similar functions during axonal development and regeneration. MAP1B and phosphorylated MAPIB in neurons and axons maintain a dynamic balance between cytoskeletal components, and regulate the stability and interaction of microtubules and actin to promote axonal growth, neural connectivity and regeneration in the central nervous system.
基金Supported by the National Natural Science Foundation of China,No.U1504815 and No.U1504808
文摘BACKGROUND Pancreatic cancer is a highly invasive malignant tumor. Expression levels of the autophagy-related protein microtubule-associated protein 1 A/1 B-light chain 3(LC3) and perineural invasion(PNI) are closely related to its occurrence and development. Our previous results showed that the high expression of LC3 was positively correlated with PNI in the patients with pancreatic cancer. In this study, we further searched for differential genes involved in autophagy of pancreatic cancer by gene expression profiling and analyzed their biological functions in pancreatic cancer, which provides a theoretical basis for elucidating the pathophysiological mechanism of autophagy in pancreatic cancer and PNI.AIM To identify differentially expressed genes involved in pancreatic cancer autophagy and explore the pathogenesis at the molecular level.METHODS Two sets of gene expression profiles of pancreatic cancer/normal tissue(GSE16515 and GSE15471) were collected from the Gene Expression Omnibus.Significance analysis of microarrays algorithm was used to screen differentially expressed genes related to pancreatic cancer. Gene Ontology(GO) analysis and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway analysis were used to analyze the functional enrichment of the differentially expressed genes. Protein interaction data containing only differentially expressed genes was downloaded from String database and screened. Module mining was carried out by Cytoscape software and ClusterOne plug-in. The interaction relationship between the modules was analyzed and the pivot nodes between the functional modules were determined according to the information of the functional modules and the data of reliable protein interaction network.RESULTS Based on the above two data sets of pancreatic tissue total gene expression, 6098 and 12928 differentially expressed genes were obtained by analysis of genes with higher phenotypic correlation. After extracting the intersection of the two differential gene sets, 4870 genes were determined. GO a
文摘BACKGROUND Colorectal cancer(CRC) is one of the main causes of cancer-related deaths in China and around the world. Advanced CRC(ACRC) patients suffer from a low cure rate though treated with targeted therapies. The response rate is about 50% to chemotherapy and cetuximab, a monoclonal antibody targeting epidermal growth factor receptor(EGFR) and used for ACRC with wild-type KRAS. It is important to identify more predictors of cetuximab efficacy to further improve precise treatment. Autophagy, showing a key role in the cancer progression, is influenced by the EGFR pathway. Whether autophagy can predict cetuximab efficacy in ACRC is an interesting topic.AIM To investigate the effect of autophagy on the efficacy of cetuximab in colon cancer cells and ACRC patients with wild-type KRAS.METHODS ACRC patients treated with cetuximab plus chemotherapy, with detailed data and tumor tissue, at Sun Yat-sen University Cancer Center from January 1, 2005,to October 1, 2015, were studied. Expression of autophagy-related proteins[Beclin1, microtubule-associated protein 1 A/B-light chain 3(LC3), and 4 Ebinding protein 1(4 E-BP1)] was examined by Western blot in CRC cells and by immunohistochemistry in cancerous and normal tissues. The effect of autophagy on cetuximab-treated cancer cells was confirmed by MTT assay. The associations between Beclin1, LC3, and 4 E-BP1 expression in tumor tissue and the efficacy of cetuximab-based therapy were analyzed.RESULTS In CACO-2 cells exposed to cetuximab, LC3 and 4 E-BP1 were upregulated, and P62 was downregulated. Autophagosome formation was observed, and autophagy increased the efficacy of cetuximab. In 68 ACRC patients,immunohistochemistry showed that Beclin1 levels were significantly correlated with those of LC3(0.657, P < 0.001) and 4 E-BP1(0.211, P = 0.042) in ACRC tissues.LC3 was significantly overexpressed in tumor tissues compared to normal tissues(P < 0.001). In 45 patients with wild-type KRAS, the expression levels of these three proteins were not related to progression-free survi