A patch with the capability of avoiding wound infection and promoting tissue remolding is of great value for wound healing.In this paper,we develop a biomass chitosan microneedle array(CSMNA)patch integrated with smar...A patch with the capability of avoiding wound infection and promoting tissue remolding is of great value for wound healing.In this paper,we develop a biomass chitosan microneedle array(CSMNA)patch integrated with smart responsive drug delivery for promoting wound healing.Chitosan possesses many outstanding features such as the natural antibacterial property and has been widely utilized for wound healing.Besides,the microstructure of microneedles enables the effective delivery of loaded drugs into the target area and avoids the excessive adhesion between the skin and the patch.Also,vascular endothelial growth factor(VEGF)is encapsulated in the micropores of CSMNA by temperature sensitive hydrogel.Therefore,the smart release of the drugs can be controllably realized via the temperature rising induced by the inflammation response at the site of wounds.It is demonstrated that the biomass CSMNA patch can promote inflammatory inhibition,collagen deposition,angiogenesis,and tissue regeneration during the wound closure.Thus,this versatile CSMNA patch is potentially valuable for wound healing in clinical applications.展开更多
The microneedle(MN), a highly efficient and versatile device, has attracted extensive scientific and industrial interests in the past decades due to prominent properties including painless penetration, low cost, excel...The microneedle(MN), a highly efficient and versatile device, has attracted extensive scientific and industrial interests in the past decades due to prominent properties including painless penetration, low cost, excellent therapeutic efficacy, and relative safety. The robust microneedle enabling transdermal delivery has a paramount potential to create advanced functional devices with superior nature for biomedical applications. In this review, a great effort has been made to summarize the advance of microneedles including their materials and latest fabrication method, such as three-dimensional printing(3DP). Importantly, a variety of representative biomedical applications of microneedles such as disease treatment, immunobiological administration, disease diagnosis and cosmetic field, are highlighted in detail. At last, conclusions and future perspectives for development of advanced microneedles in biomedical fields have been discussed systematically. Taken together, as an emerging tool, microneedles have showed profound promise for biomedical applications.展开更多
Traditional Chinese medicine and Chinese herbs have a demonstrated value for disease therapy and sub-health improvement.Attempts in this area tend to develop new forms to make their applications more convenient and wi...Traditional Chinese medicine and Chinese herbs have a demonstrated value for disease therapy and sub-health improvement.Attempts in this area tend to develop new forms to make their applications more convenient and wider.Here,we propose a novel Chinese herb microneedle(CHMN)patch by integrating the herbal extracts,Premna microphylla and Centella asiatica,with microstructure of microneedle for wound healing.Such path is composed of sap extracted from the herbal leaves via traditional kneading method and solidified by plant ash derived from the brine induced process of tofu in a well-designed mold.Because the leaves of the Premna microphylla are rich in pectin and various amino acids,the CHMN could be imparted with medicinal efficacy of heat clearing,detoxicating,detumescence and hemostatic.Besides,with the excellent pharmaceutical activity of Asiatic acid extracted from Centella asiatica,the CHMN is potential in promoting relevant growth factor genes expression in fibroblasts and showing excellent performance in anti-oxidant,anti-inflammatory and anti-bacterial activity.Taking advantages of these pure herbal compositions,we have demonstrated that the derived CHMN was with dramatical achievement in anti-bacteria,inhibiting inflammatory,collagen deposition,angiogenesis and tissue reconstruction during the wound closure.These results indicate that the integration of traditional Chinese herbs with progressive technologies will facilitate the development and promotion of traditional Chinese medicine in modern society.展开更多
Mosquitoes are exceptional in their ability to pierce into human skin with a natural ultimate painless microneedle, named fascicle. Here the structure of the Aedes albopictus mosquito fascicle is obtained using a Scan...Mosquitoes are exceptional in their ability to pierce into human skin with a natural ultimate painless microneedle, named fascicle. Here the structure of the Aedes albopictus mosquito fascicle is obtained using a Scanning Electron Microscope (SEM), and the whole process of the fascicle inserting into human skin is observed using a high-speed video imaging technique. Direct measurements of the insertion force for mosquito fascicle to penetrate into human skin are reported. Results show that the mosquito uses a very low force (average 18 μN) to penetrate into the skin. This force is at least three orders of magnitude smaller than the reported lowest insertion force for an artificial microneedle with an ultra sharp tip to insert into the human skin. In order to understand the piercing mechanism of mosquito fascicle tip into human multilayer skin tissue, a numerical simulation is conducted to analyze the insertion process using a nonlinear finite element method. A good agreement occurs between the numerical results and the experimental measurements.展开更多
Microneedle(MN)arrays have demonstrated value for cosmetics,diagnosis,transdermal drug delivery,and other biomedical areas.Much effort has been devoted to developing simple stratagem for creating versatile moldings an...Microneedle(MN)arrays have demonstrated value for cosmetics,diagnosis,transdermal drug delivery,and other biomedical areas.Much effort has been devoted to developing simple stratagem for creating versatile moldings and generating functional MN arrays.Here,inspired by the serrated microstructure of mantises’forelegs,we present a novel serration-like clamping MN array based on ferrofluidconfigured moldings.Benefiting from the flexibility and versatility of ferrofluids,negative microhole array moldings with various sizes and angles toward the midline could be created easily.The corresponding biocompatible polymer MN arrays with both isotropic and anisotropic structures could then be produced feasibly and cost-effectively by simply replicating these moldings.It was found that the resultant serrated clamping MN arrays had the ability to adhere to skin firmly,enabling them to be used over a relatively long time and while the recipient was moving.This proposed technology performed well in minimally invasive drug administration and sustained glucocorticoids release during treatment for imiquimod-induced psoriasis in mice.These features indicated that such MN arrays could play important roles in wearable transdermal drug delivery systems and in other applications.展开更多
基金supported by the National Natural Science Foundation of China(grants 61927805 , 51522302)the NSAF Foundation of China(grant U1530260)+2 种基金the Natural Science Foundation of Jiangsu(Grant no.BE2018707)the Special Fund for Military Medical Science(grants BWS16J007 , AWS17J009)the China Postdoctoral Science Foundation funded project(2019M663090).
文摘A patch with the capability of avoiding wound infection and promoting tissue remolding is of great value for wound healing.In this paper,we develop a biomass chitosan microneedle array(CSMNA)patch integrated with smart responsive drug delivery for promoting wound healing.Chitosan possesses many outstanding features such as the natural antibacterial property and has been widely utilized for wound healing.Besides,the microstructure of microneedles enables the effective delivery of loaded drugs into the target area and avoids the excessive adhesion between the skin and the patch.Also,vascular endothelial growth factor(VEGF)is encapsulated in the micropores of CSMNA by temperature sensitive hydrogel.Therefore,the smart release of the drugs can be controllably realized via the temperature rising induced by the inflammation response at the site of wounds.It is demonstrated that the biomass CSMNA patch can promote inflammatory inhibition,collagen deposition,angiogenesis,and tissue regeneration during the wound closure.Thus,this versatile CSMNA patch is potentially valuable for wound healing in clinical applications.
基金financially supported by the National Natural Science Foundation of China (Grants Nos. 21874066, 81601632 and 21563009, China)the Natural Science Foundation of Jiangsu Province (BK20160616, China)+2 种基金the Fundamental Research Funds for Central Universities (China)the Shuangchuang Program of Jiangsu Province (China)Thousand Talents Program for Young Researchers (China)
文摘The microneedle(MN), a highly efficient and versatile device, has attracted extensive scientific and industrial interests in the past decades due to prominent properties including painless penetration, low cost, excellent therapeutic efficacy, and relative safety. The robust microneedle enabling transdermal delivery has a paramount potential to create advanced functional devices with superior nature for biomedical applications. In this review, a great effort has been made to summarize the advance of microneedles including their materials and latest fabrication method, such as three-dimensional printing(3DP). Importantly, a variety of representative biomedical applications of microneedles such as disease treatment, immunobiological administration, disease diagnosis and cosmetic field, are highlighted in detail. At last, conclusions and future perspectives for development of advanced microneedles in biomedical fields have been discussed systematically. Taken together, as an emerging tool, microneedles have showed profound promise for biomedical applications.
基金This work was supported by the National Key Research and Development Program of China(2020YFA0908200)the National Natural Science Foundation of China(52073060,61927805 and 22002018)+1 种基金the Natural Science Foundation of Jiangsu(BE2018707)the Shenzhen Fundamental Research Program(JCYJ20190813152616459)。
文摘Traditional Chinese medicine and Chinese herbs have a demonstrated value for disease therapy and sub-health improvement.Attempts in this area tend to develop new forms to make their applications more convenient and wider.Here,we propose a novel Chinese herb microneedle(CHMN)patch by integrating the herbal extracts,Premna microphylla and Centella asiatica,with microstructure of microneedle for wound healing.Such path is composed of sap extracted from the herbal leaves via traditional kneading method and solidified by plant ash derived from the brine induced process of tofu in a well-designed mold.Because the leaves of the Premna microphylla are rich in pectin and various amino acids,the CHMN could be imparted with medicinal efficacy of heat clearing,detoxicating,detumescence and hemostatic.Besides,with the excellent pharmaceutical activity of Asiatic acid extracted from Centella asiatica,the CHMN is potential in promoting relevant growth factor genes expression in fibroblasts and showing excellent performance in anti-oxidant,anti-inflammatory and anti-bacterial activity.Taking advantages of these pure herbal compositions,we have demonstrated that the derived CHMN was with dramatical achievement in anti-bacteria,inhibiting inflammatory,collagen deposition,angiogenesis and tissue reconstruction during the wound closure.These results indicate that the integration of traditional Chinese herbs with progressive technologies will facilitate the development and promotion of traditional Chinese medicine in modern society.
基金supported by the National Natural Science Foundation of China (No.10672035,No.90816025,No.10721062)SRFDP (No.20060141007)
文摘Mosquitoes are exceptional in their ability to pierce into human skin with a natural ultimate painless microneedle, named fascicle. Here the structure of the Aedes albopictus mosquito fascicle is obtained using a Scanning Electron Microscope (SEM), and the whole process of the fascicle inserting into human skin is observed using a high-speed video imaging technique. Direct measurements of the insertion force for mosquito fascicle to penetrate into human skin are reported. Results show that the mosquito uses a very low force (average 18 μN) to penetrate into the skin. This force is at least three orders of magnitude smaller than the reported lowest insertion force for an artificial microneedle with an ultra sharp tip to insert into the human skin. In order to understand the piercing mechanism of mosquito fascicle tip into human multilayer skin tissue, a numerical simulation is conducted to analyze the insertion process using a nonlinear finite element method. A good agreement occurs between the numerical results and the experimental measurements.
基金supported by the National Key Research and Development Program of China(2017YFA0700404)the NSAF Foundation of China(U1530260)+2 种基金the Natural Science Foundation of Jiangsu(BE2018707)the Scientific Research Foundation of Southeast Universitythe Scientific Research Foundation of the Graduate School of Southeast University
文摘Microneedle(MN)arrays have demonstrated value for cosmetics,diagnosis,transdermal drug delivery,and other biomedical areas.Much effort has been devoted to developing simple stratagem for creating versatile moldings and generating functional MN arrays.Here,inspired by the serrated microstructure of mantises’forelegs,we present a novel serration-like clamping MN array based on ferrofluidconfigured moldings.Benefiting from the flexibility and versatility of ferrofluids,negative microhole array moldings with various sizes and angles toward the midline could be created easily.The corresponding biocompatible polymer MN arrays with both isotropic and anisotropic structures could then be produced feasibly and cost-effectively by simply replicating these moldings.It was found that the resultant serrated clamping MN arrays had the ability to adhere to skin firmly,enabling them to be used over a relatively long time and while the recipient was moving.This proposed technology performed well in minimally invasive drug administration and sustained glucocorticoids release during treatment for imiquimod-induced psoriasis in mice.These features indicated that such MN arrays could play important roles in wearable transdermal drug delivery systems and in other applications.