Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to underst...Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also inter- fere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influ- ence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, pro- biotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.展开更多
Background: Insects, such as Hermetia illucens larvae, are rich in chitin and proteins, and represent a suitable feed ingredient replacement for animals. However, little is known about the effect of administering H. i...Background: Insects, such as Hermetia illucens larvae, are rich in chitin and proteins, and represent a suitable feed ingredient replacement for animals. However, little is known about the effect of administering H. illucens larvae on intestinal microbiota, bacterial metabolite profiles, and mucosal immune status in animals. This study aimed to investigate the effects of administering H. illucens larvae on colonic microbiota and bacterial metabolites production in finishing pigs. Seventy-two crossbred(Duroc × Landrace × Large White) female pigs(initial body weight, 76.0 ± 0.52 kg) were randomly allocated to three different dietary treatments: a control diet(Control group) and two diets corresponding to 4%(H1 group) and 8%(H2 group) H. illucens larvae inclusion levels, respectively. Each treatment consisted of eight pens(replicates), with three pigs per pen. After 46 days of feeding, eight pigs per treatment(n =8) were slaughtered, and the colonic digesta and mucosa were collected for microbial composition and microbial fermentation products, and genes expression analyses.Results: The results showed that the H1 diet significantly increased the abundance of Lactobacillus,Pseudobutyrivibrio, Roseburia, and Faecalibacterium compared with those in the control group(P < 0.05), with a decrease in the abundance of Streptococcus. The numbers of Lactobacillus, Roseburia, and Clostridium cluster XIVa were significantly greater in the H1 group than in the control group(P < 0.05). Meanwhile, H2 diet increased the number of Clostridium cluster XIVa compared with the control group(P < 0.05). For colonic metabolites, total short chain fatty acids, butyrate, and isobutyrate concentrations were significantly higher in the H1 group than those in the control group(P < 0.05);the H1 treatment caused a striking decrease in protein fermentation compared with the control group, as the concentrations of total amines, cadaverine, tryptamine, phenol, p-cresol, and skatole were significantly lower(P < 0.05). Additionally, H2 diet also inc展开更多
The prevalence of non-alcoholic fatty liver disease(NAFLD) is rising exponentially worldwide. The spectrum of NAFLD includes non-alcoholic fatty liver, non-alcoholic steatohepatitis, liver cirrhosis, and even hepatoce...The prevalence of non-alcoholic fatty liver disease(NAFLD) is rising exponentially worldwide. The spectrum of NAFLD includes non-alcoholic fatty liver, non-alcoholic steatohepatitis, liver cirrhosis, and even hepatocellular carcinoma. Evidence shows that microbial metabolites play pivotal roles in the onset and progression of NAFLD. In this review, we discuss how microbederived metabolites, such as short-chain fatty acids, endogenous ethanol, bile acids and so forth, contribute to the pathogenesis of NAFLD.展开更多
This experiment studied the effects of dietary protein sources and levels on the gut health of piglets,p H value,and concentrations of microbial metabolites(ammonia-N,volatile fatty acids [VFA],and polyamines) in the ...This experiment studied the effects of dietary protein sources and levels on the gut health of piglets,p H value,and concentrations of microbial metabolites(ammonia-N,volatile fatty acids [VFA],and polyamines) in the distal colonic and proximal colonic digesta of piglets weaned at 21 d of age.A total of 150 early-weaned piglets were allotted randomly to 5 diets: 1) control diet(CT; 17% CP),2) CT formulated with more soy protein concentrate(SPC19; 19% CP),3) more fish meal(FM19; 19% CP),4) CT formulated with more soy protein concentrate(SPC23; 23% CP),and 5) more fish meal(FM23; 23%CP).Results showed high protein level increased fecal score(P < 0.05),but different protein sources did not(P > 0.05).The p H value and ammonia-N concentration of digesta in the proximal and distal colon of FM23 were significantly higher(P < 0.05) than those of CT.Acetic acid,propionic acid,butyric acid and valeric acid concentrations in the proximal colon of FM23 exceeded those of CT,SPC19,and FM19(P < 0.05);however,isobutyric acid and isovaleric acid were not affected(P > 0.05).Histamine and spermidine concentrations of FM23 were higher than those of other treatments(P < 0.05).Propionic acid and butyric acid concentrations in the distal colon were higher of FM23 than of FM19(P < 0.05); putrescine,histamine and spermidine were higher of FM23 than of LP and FM19(P < 0.05).It was concluded that high dietary CP content increased microbial metabolites(ammonia-N,histamine,putrescine) in colonic digesta and aggravated piglets' diarrhea.展开更多
基金supported by the National Institutes of Health (NIH Grant No. CA190122)+3 种基金Department of Defense (Do D Award No. W81XWH-16-1-0151) of the United States awarded to QTsupported by Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences (CIFMS Grant No. 2016-12M-1-001) awarded to CB
文摘Human gut microbiota play an essential role in both healthy and diseased states of humans. In the past decade, the interactions between microorganisms and tumors have attracted much attention in the efforts to understand various features of the complex microbial communities, as well as the possible mechanisms through which the microbiota are involved in cancer prevention, carcinogenesis, and anti-cancer therapy. A large number of studies have indicated that microbial dysbiosis contributes to cancer susceptibility via multiple pathways. Further studies have suggested that the microbiota and their associated metabolites are not only closely related to carcinogenesis by inducing inflammation and immune dysregulation, which lead to genetic instability, but also inter- fere with the pharmacodynamics of anticancer agents. In this article, we mainly reviewed the influ- ence of gut microbiota on cancers in the gastrointestinal (GI) tract (including esophageal, gastric, colorectal, liver, and pancreatic cancers) and the regulation of microbiota by diet, prebiotics, pro- biotics, synbiotics, antibiotics, or the Traditional Chinese Medicine. We also proposed some new strategies in the prevention and treatment of GI cancers that could be explored in the future. We hope that this review could provide a comprehensive overview of the studies on the interactions between the gut microbiota and GI cancers, which are likely to yield translational opportunities to reduce cancer morbidity and mortality by improving prevention, diagnosis, and treatment.
基金supported by the Presidential Foundation of the Guangdong Academy of Agricultural Sciences(201802B,201621)Guangdong Modern Agro-industry Technology Research System(2016LM1080,2017LM1080)
文摘Background: Insects, such as Hermetia illucens larvae, are rich in chitin and proteins, and represent a suitable feed ingredient replacement for animals. However, little is known about the effect of administering H. illucens larvae on intestinal microbiota, bacterial metabolite profiles, and mucosal immune status in animals. This study aimed to investigate the effects of administering H. illucens larvae on colonic microbiota and bacterial metabolites production in finishing pigs. Seventy-two crossbred(Duroc × Landrace × Large White) female pigs(initial body weight, 76.0 ± 0.52 kg) were randomly allocated to three different dietary treatments: a control diet(Control group) and two diets corresponding to 4%(H1 group) and 8%(H2 group) H. illucens larvae inclusion levels, respectively. Each treatment consisted of eight pens(replicates), with three pigs per pen. After 46 days of feeding, eight pigs per treatment(n =8) were slaughtered, and the colonic digesta and mucosa were collected for microbial composition and microbial fermentation products, and genes expression analyses.Results: The results showed that the H1 diet significantly increased the abundance of Lactobacillus,Pseudobutyrivibrio, Roseburia, and Faecalibacterium compared with those in the control group(P < 0.05), with a decrease in the abundance of Streptococcus. The numbers of Lactobacillus, Roseburia, and Clostridium cluster XIVa were significantly greater in the H1 group than in the control group(P < 0.05). Meanwhile, H2 diet increased the number of Clostridium cluster XIVa compared with the control group(P < 0.05). For colonic metabolites, total short chain fatty acids, butyrate, and isobutyrate concentrations were significantly higher in the H1 group than those in the control group(P < 0.05);the H1 treatment caused a striking decrease in protein fermentation compared with the control group, as the concentrations of total amines, cadaverine, tryptamine, phenol, p-cresol, and skatole were significantly lower(P < 0.05). Additionally, H2 diet also inc
基金Supported by National Key Research and Development Plan ‘Precision Medicine Research’,No.2017YFSF090203the National Natural Science Foundation of China,No.81470840,No.81873565,and No.81800510Shanghai Sailing Program,No.18YF1415900
文摘The prevalence of non-alcoholic fatty liver disease(NAFLD) is rising exponentially worldwide. The spectrum of NAFLD includes non-alcoholic fatty liver, non-alcoholic steatohepatitis, liver cirrhosis, and even hepatocellular carcinoma. Evidence shows that microbial metabolites play pivotal roles in the onset and progression of NAFLD. In this review, we discuss how microbederived metabolites, such as short-chain fatty acids, endogenous ethanol, bile acids and so forth, contribute to the pathogenesis of NAFLD.
基金financially supported by National Basic Research Program of China (NO.2013CB127304 and 2013CB127301)National Science and Technology Support Program (2012BAD39B01-5)+2 种基金Science and Technology Planning Project of Guangdong Province (2013A061401020,2016A020210041)Operating Funds for Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition (2014B030301054)China Agriculture Research System (CARS-36)
文摘This experiment studied the effects of dietary protein sources and levels on the gut health of piglets,p H value,and concentrations of microbial metabolites(ammonia-N,volatile fatty acids [VFA],and polyamines) in the distal colonic and proximal colonic digesta of piglets weaned at 21 d of age.A total of 150 early-weaned piglets were allotted randomly to 5 diets: 1) control diet(CT; 17% CP),2) CT formulated with more soy protein concentrate(SPC19; 19% CP),3) more fish meal(FM19; 19% CP),4) CT formulated with more soy protein concentrate(SPC23; 23% CP),and 5) more fish meal(FM23; 23%CP).Results showed high protein level increased fecal score(P < 0.05),but different protein sources did not(P > 0.05).The p H value and ammonia-N concentration of digesta in the proximal and distal colon of FM23 were significantly higher(P < 0.05) than those of CT.Acetic acid,propionic acid,butyric acid and valeric acid concentrations in the proximal colon of FM23 exceeded those of CT,SPC19,and FM19(P < 0.05);however,isobutyric acid and isovaleric acid were not affected(P > 0.05).Histamine and spermidine concentrations of FM23 were higher than those of other treatments(P < 0.05).Propionic acid and butyric acid concentrations in the distal colon were higher of FM23 than of FM19(P < 0.05); putrescine,histamine and spermidine were higher of FM23 than of LP and FM19(P < 0.05).It was concluded that high dietary CP content increased microbial metabolites(ammonia-N,histamine,putrescine) in colonic digesta and aggravated piglets' diarrhea.