Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels o...Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.展开更多
基金supported by the National Hi-Tech Research and Development Program (863) of China (No.2006AA06Z386, 2007AA06Z306)the China Postdoctor-al Science Foundation (No. 20070421174)+2 种基金the National Natural Science Foundation of China (No. 30771254)the Zhejiang Provincial Natural Science Foundation (No.Z306260)the National Key Technologies R&D Pro-gram of China (No. 2006BAI09B03)
文摘Degradation of chlorpyrifos at different concentrations in soil and its impact on soil microbial functional diversity were investigated under laboratory condition. The degradation half-live of chlorpyrifos at levels of 4, 8, and 12 mg/kg in soil were calculated to be 14.3, 16.7, and 18.0 d, respectively. The Biolog study showed that the average well color development (AWCD) in soils was significantly (P 〈 0.05) inhibited by chlorpyrifos within the first two weeks and thereafter recovered to a similar level as the control. A similar variation in the diversity indices (Simpson index lID and McIntosh index U) was observed, but no significant difference among the values of the Shannon-Wiener index H' was found in chlorpyrifos-treated soils. With an increasing chlorpyrifos concentration, the half-life of chlorpyrifos was significantly (P ≤ 0.05) extended and its inhibitory effect on soil microorganisms was aggravated. It is concluded that chlorpyrifos residues in soil had a temporary or short-term inhibitory effect on soil microbial functional diversity.