The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on...The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.展开更多
Flow boiling is an important heat dissipation method for cooling high heat flux surfaces in many industrial applications.The heat transfer can be further enhanced by using porous media surfaces due to their high speci...Flow boiling is an important heat dissipation method for cooling high heat flux surfaces in many industrial applications.The heat transfer can be further enhanced by using porous media surfaces due to their high specific surface areas.However,although flow boiling in channels is well understood,the phasechange behavior with the additional capillary effect induced by the porous structures is not well understood,and the design of the porous structures is difficult to avoid dryout and over-temperature accidents.A pore-scale lab-on-a-chip method was used here to investigate the flow boiling heat transfer characteristics inside micro-porous structures.The flow patterns,captured in the two-phase region with a uniform pore-throat size of 30 lm,showed that liquid was trapped in the pore-throat structures as both dispersed liquid bridges and liquid films.Moreover,the liquid film was shown to be moving on the wet solid surface by laser-induced fluorescence and particle tracking.A theoretical analysis showed that the capillary pressure difference between adjacent liquid bridges could drive the liquid film flows,which helped maintain the coolant supply in the two-phase region.The pore-throat parameters could be designed to enhance the capillary pressure difference with multiple throat sizes of 10–90 lm which would enhance the heat transfer 5%–10%with a 5%–23%pressure drop reduction.This research provides another method for improving the flow boiling heat transfer through the porous structure design besides changing the surface wettability.展开更多
Designing efficient and stable non-precious metal HER(hydrogen evolution reaction)electrocatalysts with high large current density adaptability is significant for industrial application of hydrogen production by water...Designing efficient and stable non-precious metal HER(hydrogen evolution reaction)electrocatalysts with high large current density adaptability is significant for industrial application of hydrogen production by water electrolysis.Herein,a facile strategy was developed to construct a multi-phase Ni3 P-Co_(2)P-(Ni-Co)film with self-supporting hierarchically micro/nano-porous structure by using bubble template method electrodeposition of self-supporting micro-porous Ni Co P film,oxygen-free annealing for phase separation producing Ni_(3)P-Ni-Co_(2)P-Co structure,and acid etching for constructing surface nano-porous structure.The effective active sites for HER was significantly increased due to the hierarchically micro/nano-porous structure,which not only enlarged the surface roughness,but enhanced the bubble detachment by improving the hydrophilicity.Meanwhile,the HER electrolysis durability was improved benefiting from the Ni_(3)P-Co_(2)P phases with high corrosion resistance(especially in acid solution)and the self-supporting film structure without binder.Consequently,the Ni Co P-OA-AE film exhibited high HER catalytic performance,which delivered a current density of 10 m A cm^(-2)at a low overpotential of 42.9 and 39.7 m V in 1 M KOH and 0.5 M H_(2)SO_(4),respectively.It also possessed high long-term electrolysis durability,and the cell voltage of water electrolysis using self-supporting porous Ni Co P-OA-AE||Ir O_(2)-Ta_(2)O_(5) electrolyzer at 500 m A cm^(-2)for 250 h in 0.5 M H_(2)SO_(4 )is only 2.9 V.展开更多
基金supported by the National Natural Science Foundation of China(52275463,51772240)the National Key Research and Development Program of China(2021YFB3302000)the Key Research and Development Projects of Shaanxi Province,China(2018ZDXM-GY-135)。
文摘The development of energy storage devices with high energy density relies heavily on thick film electrodes,but it is challenging due to the limited ion transport kinetics inherent in thick electrodes.Here,we report on the preparation of a directional vertical array of micro-porous transport networks on LTO electrodes using a femtosecond laser processing strategy,enabling directional ion rapid transport and achieving good electrochemical performance in thick film electrodes.Various three-dimensional(3D)vertically aligned micro-pore networks are innovatively designed,and the structure,kinetics characteristics,and electrochemical performance of the prepared ion transport channels are analyzed and discussed by multiple characterization and testing methods.Furthermore,the rational mechanisms of electrode performance improvement are studied experimentally and simulated from two aspects of structural mechanics and transmission kinetics.The ion diffusion coefficient,rate performance at 60 C,and electrode interface area of the laser-optimized 60-15%micro-porous transport network electrodes increase by 25.2 times,2.2 times,and 2.15 times,respectively than those of untreated electrodes.Therefore,the preparation of 3D micro-porous transport networks by femtosecond laser on ultra-thick electrodes is a feasible way to develop high-energy batteries.In addition,the unique micro-porous transport network structure can be widely extended to design and explore other high-performance energy materials.
基金supported by the National Natural Science Foundation of China for Excellent Young Scientist(51722602)the National Science and Technology Major Project(2017-lll-00030027)。
文摘Flow boiling is an important heat dissipation method for cooling high heat flux surfaces in many industrial applications.The heat transfer can be further enhanced by using porous media surfaces due to their high specific surface areas.However,although flow boiling in channels is well understood,the phasechange behavior with the additional capillary effect induced by the porous structures is not well understood,and the design of the porous structures is difficult to avoid dryout and over-temperature accidents.A pore-scale lab-on-a-chip method was used here to investigate the flow boiling heat transfer characteristics inside micro-porous structures.The flow patterns,captured in the two-phase region with a uniform pore-throat size of 30 lm,showed that liquid was trapped in the pore-throat structures as both dispersed liquid bridges and liquid films.Moreover,the liquid film was shown to be moving on the wet solid surface by laser-induced fluorescence and particle tracking.A theoretical analysis showed that the capillary pressure difference between adjacent liquid bridges could drive the liquid film flows,which helped maintain the coolant supply in the two-phase region.The pore-throat parameters could be designed to enhance the capillary pressure difference with multiple throat sizes of 10–90 lm which would enhance the heat transfer 5%–10%with a 5%–23%pressure drop reduction.This research provides another method for improving the flow boiling heat transfer through the porous structure design besides changing the surface wettability.
基金supported by the National Natural Science Foundation of China(Nos.51804023 and 51874020)the Fundamental Research Funds for the Central Universities(Nos.FRF-TP-18-007A1)+1 种基金the China Postdoctoral Science Foundation(Nos.2019M650489 and 2019T120046)Taishan Scholars Program(No.tsqn201909087)。
文摘Designing efficient and stable non-precious metal HER(hydrogen evolution reaction)electrocatalysts with high large current density adaptability is significant for industrial application of hydrogen production by water electrolysis.Herein,a facile strategy was developed to construct a multi-phase Ni3 P-Co_(2)P-(Ni-Co)film with self-supporting hierarchically micro/nano-porous structure by using bubble template method electrodeposition of self-supporting micro-porous Ni Co P film,oxygen-free annealing for phase separation producing Ni_(3)P-Ni-Co_(2)P-Co structure,and acid etching for constructing surface nano-porous structure.The effective active sites for HER was significantly increased due to the hierarchically micro/nano-porous structure,which not only enlarged the surface roughness,but enhanced the bubble detachment by improving the hydrophilicity.Meanwhile,the HER electrolysis durability was improved benefiting from the Ni_(3)P-Co_(2)P phases with high corrosion resistance(especially in acid solution)and the self-supporting film structure without binder.Consequently,the Ni Co P-OA-AE film exhibited high HER catalytic performance,which delivered a current density of 10 m A cm^(-2)at a low overpotential of 42.9 and 39.7 m V in 1 M KOH and 0.5 M H_(2)SO_(4),respectively.It also possessed high long-term electrolysis durability,and the cell voltage of water electrolysis using self-supporting porous Ni Co P-OA-AE||Ir O_(2)-Ta_(2)O_(5) electrolyzer at 500 m A cm^(-2)for 250 h in 0.5 M H_(2)SO_(4 )is only 2.9 V.