The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual worklo...The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.展开更多
The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocom...The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocomposites (AC/Fe304-NPs) were synthesized using a facile hy- drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe304 nanoparticles (Fe304-NPs) grew along the edge of AC. AC/Fe304-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1% at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.展开更多
To improve the performance of spin transfer torque random access memory(STT-RAM),especially writing speed,we propose three modified 3-terminal STT-RAM cells.A magnetic dynamic process in the new structures was inves...To improve the performance of spin transfer torque random access memory(STT-RAM),especially writing speed,we propose three modified 3-terminal STT-RAM cells.A magnetic dynamic process in the new structures was investigated through micro-magnetic simulation.The best switching speed of the new structures is 120%faster than that of the rectangular 3-terminal device.The optimized 3-terminal device offers high speed while maintaining the high reliability of the 3-terminal structure.展开更多
基金supported by grants from the National Key Research and Development Plan of China,No.31670986(to QTZ)the Science and Technology Project of Guangdong Province of China,No.2014B020227001,2017A050501017(to QTZ)the Science and Technology Project of Guangzhou of China,No.201807010082(to QTZ),201704030041(to JQ)
文摘The most common methods for three-dimensional reconstruction of peripheral nerve fascicles include histological and radiology techniques. Histological techniques have many drawbacks including an enormous manual workload and poor image registration. Micro-magnetic resonance imaging(Micro-MRI), an emerging radiology technique, has been used to report results in the brain, liver and tumor tissues. However, micro-MRI usage for obtaining intraneural structures has not been reported. The aim of this study was to present a new imaging method for three-dimensional reconstruction of peripheral nerve fascicles by ~1T micro-MRI. Freshly harvested sciatic nerve samples from an amputated limb were divided into four groups. Two different scanning conditions(Mannerist Solution/GD-DTPA contrast agent, distilled water) were selected, and both T1 and T2 phases programmed for each scanning condition. Three clinical surgeons evaluated the quality of the images via a standardized scale. Moreover, to analyze deformation of the two-dimensional image, the nerve diameter and total area of the micro-MRI images were compared after hematoxylin-eosin staining. The results show that rapid micro-MRI imaging method can be used for three-dimensional reconstruction of the fascicle structure. Nerve sample immersed in contrast agent(Mannerist Solution/GD-DTPA) and scanned in the T1 phase was the best. Moreover, the nerve sample was scanned freshly and can be recycled for other procedures. MRI images show better stability and smaller deformation compared with histological images. In conclusion, micro-MRI provides a feasible and rapid method for three-dimensional reconstruction of peripheral nerve fascicles, which can clearly show the internal structure of the peripheral nerve.
基金supported by the National Natural Science Foundation of China(Grant No.21376034 and 21373025)
文摘The effects of magnetic fields on electrochemical processes have made a great impact on both theoretical and practical significances in im- proving capacitor performance. In this study, active carbon/Fe304-NPs nanocomposites (AC/Fe304-NPs) were synthesized using a facile hy- drothermal method and ultrasonic technique. Transmission electron micrographs (TEM) showed that Fe304 nanoparticles (Fe304-NPs) grew along the edge of AC. AC/Fe304-NPs nanocomposites were further used as an electrochemical electrode, and its electrochemical performance was tested under magnetization and non-magnetization conditions, respectively, in a three-electrode electrochemical device. Micro-magnetic field could improve the electric double-layer capacitance, reduce the charge transfer resistance, and enhance the discharge performance. The capacitance enhancement of magnetized electrode was increased by 33.1% at the current density of 1 A/g, and the energy density was improved to 15.97 Wh/kg, due to the addition of magnetic particles.
基金Project supported by the National High Technology Research and Development Program of China(No.2009AA01 A403)the Foundation for Key Program of Ministry of Education,China(No.20091770305)the Fok Ying-Tong Education Foundation,China(No.114011)
文摘To improve the performance of spin transfer torque random access memory(STT-RAM),especially writing speed,we propose three modified 3-terminal STT-RAM cells.A magnetic dynamic process in the new structures was investigated through micro-magnetic simulation.The best switching speed of the new structures is 120%faster than that of the rectangular 3-terminal device.The optimized 3-terminal device offers high speed while maintaining the high reliability of the 3-terminal structure.