Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the i...Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the initial stages of the deformation/forming process. A lack of microstructural information causes conventional macro-mechanics finite element(FE) tools to break down when used to investigate the localized microstructure evolution and necking encountered in micro-forming. An effort has been made to create an integrated crystal plasticity finite element(CPFE) system that enables micro-forming process simulations to be carried out easily, with the important features in forming micro-parts captured by the model. Based on Voronoi tessellation and probability theory, a virtual GRAIN(VGRAIN) system is created for generating grains and grain boundaries for micro-materials. Numerical procedures are devel- oped to link the physical parameters of a material to the control variables in a Gamma distribution. A script interface is developed so that the virtual microstructure can be input to the commercial FE code, ABAQUS, for mesh generation. A simplified plane strain CPFE modeling technique is developed and used to capture localized thinning and failure features for hydro-forming of micro-tubes. Grains within the tube workpiece, their distributions and orientations are generated automatically by using the VGRAIN system. A set of crystal viscoplasticity constitutive equations are implemented in ABAQUS/Explicit by using the user-defined material subroutine, VUMAT. Lo- calized thinning is analyzed for different microstructures and deformation conditions of the material using the CPFE modeling technique. The research results show that locations of thinning in forming micro-tubes can be random, which are related to microstructure and grain orientations of the material. The proposed CPFE technique can be used to predict the locations of thinning in forming micro-tubes.展开更多
Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing sc...Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.展开更多
基金supported by the EuropeanFP6-IP Project"Integration of Manufacturing Systems for Mass-manufacture of Miniature/Micro-Products(MASMICRO)"
文摘Micro-tubes manufactured by hydro-forming techniques have now been widely used in medical and microelectronics applica- tions. One of the difficulties in forming such parts is the control of localized necking in the initial stages of the deformation/forming process. A lack of microstructural information causes conventional macro-mechanics finite element(FE) tools to break down when used to investigate the localized microstructure evolution and necking encountered in micro-forming. An effort has been made to create an integrated crystal plasticity finite element(CPFE) system that enables micro-forming process simulations to be carried out easily, with the important features in forming micro-parts captured by the model. Based on Voronoi tessellation and probability theory, a virtual GRAIN(VGRAIN) system is created for generating grains and grain boundaries for micro-materials. Numerical procedures are devel- oped to link the physical parameters of a material to the control variables in a Gamma distribution. A script interface is developed so that the virtual microstructure can be input to the commercial FE code, ABAQUS, for mesh generation. A simplified plane strain CPFE modeling technique is developed and used to capture localized thinning and failure features for hydro-forming of micro-tubes. Grains within the tube workpiece, their distributions and orientations are generated automatically by using the VGRAIN system. A set of crystal viscoplasticity constitutive equations are implemented in ABAQUS/Explicit by using the user-defined material subroutine, VUMAT. Lo- calized thinning is analyzed for different microstructures and deformation conditions of the material using the CPFE modeling technique. The research results show that locations of thinning in forming micro-tubes can be random, which are related to microstructure and grain orientations of the material. The proposed CPFE technique can be used to predict the locations of thinning in forming micro-tubes.
基金Project(51375113)supported by the National Natural Science Foundation of China
文摘Micro radial compression tests were carried out on cylindrical specimens of pure copper polycrystals with different grain sizes. Experimental results indicated that phenomena of decreasing forming force, increasing scatter of forming force and more irregular surface topography occurred with the increase of grain size. A modified surface model based on dislocations pile-up in surface layer grains, and a flow stress scattering formulation based on standard deviation and grain size distribution were proposed to analyze size effects on forming force in micro compression. The inhomogeneous deformation of surface layer grains was discussed by the main deformation manner of rotation. A good agreement with the experimental results was achieved.