Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was...Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was prepared by laser treatment and multiple acid etching. The surface morphologies of different titanium alloy substrates were characterized by scanning electron microscopy (SEM). The effects of micro-nanostructured surfaces on the cellular responses were investigated in vitro by observing hydroxyapatite formation, cell morphology and cell adhesion. The results indicate that the micro-sized structure promoted the adhesion and proliferation of cultured osteoblasts. Furthermore, the micro-nanostructured surface was more conducive to cell adhension stretching compared with the micro-structured surface. All results suggest that the micro-nanostructured surface improved the biocompatibility and integration of tissue onto titanium alloy implants.展开更多
采用数字微镜器件(DMD)无掩模光刻技术,以飞秒激光为光源,结合大面积拼接的方法快速制备了具有较高分辨率和毫米尺寸的大面积微纳结构。提出以单子场投影线扫描的方式进一步改善由于光场能量分布不均匀引起的结构边缘粗糙的问题,极大地...采用数字微镜器件(DMD)无掩模光刻技术,以飞秒激光为光源,结合大面积拼接的方法快速制备了具有较高分辨率和毫米尺寸的大面积微纳结构。提出以单子场投影线扫描的方式进一步改善由于光场能量分布不均匀引起的结构边缘粗糙的问题,极大地降低了线条的边缘粗糙度,有效地控制了结构的精度。本研究以半导体领域常用的正性光刻胶为主要研究对象,实现了面积为7.4 mm 2的1μm等间距线阵列和面积为38.7 mm 2的10μm等间距线阵列结构的快速制备。本研究为大面积微纳结构制备提供了一种新方法,所制备结构可应用于气液流动、药物输运及晶体生长等领域。展开更多
This study demonstrates a facile and efficient hydrothermal method to prepare spindle titanate(Li4Ti5O12 denoted as LTO)and/or carbon-LTO nanocomposites(CLTO),in which the LTO or C-LTO microspheres have diameters of a...This study demonstrates a facile and efficient hydrothermal method to prepare spindle titanate(Li4Ti5O12 denoted as LTO)and/or carbon-LTO nanocomposites(CLTO),in which the LTO or C-LTO microspheres have diameters of a few micrometers,composed of numerous nanosheets with thickness of*30 nm and edge length of hundreds of nanometers.The morphology and size control of these nanoparticles could be achieved by varying experimental parameters including concentration of titanium butoxide,lithium hydroxide,and cetyltrimethylammonium bromide,as well as reaction temperature and time.These micro-nanostructures were characterized by several advanced techniques,such as transmission electron microscopy,scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopic analysis,surface area,and electrochemical measurements.The LTO and C-LTO microstructures were examined in the charge–discharge capacity at a rate of 50 C,as well as the stability after 100 cycles at a rate of 10 C.The excellent capability may be attributed to good conductivity,large surface area,and stable assembly structure of such micro-nanostructures,which could be explored as a promising anode material for lithium-ion batteries.展开更多
Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding tec...Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance.展开更多
The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as ...The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as the building block, were self-assembled into multilayer structures under the action of ethidene diamine, and then grew into uniform peony-like CuO architecture. The novel peony-like CuO micro/nanostructures exhibit a high cycling stability and improved rate capability. The peony-like CuO microJnanostructures electrodes show a high reversible capacity of 456 mAhJg after 200 cycles, much higher than that of the commercial CuO nanocrystals at a current 0.1 C. The excellent electrochemical performance of peony-like CuO micro/nanostructures might be ascribed to the unique assembly structure, which not only provide large electrode/electrolyte contact area to accelerate the lithiation reaction, but also the interval between the multilayer structures of CuO nanoplates electrode could provide enough interior space to accommodate the volume change during Li insertion and de-insertion process,展开更多
基金Projects(5117530651575320)supported by the National Natural Science Foundation of China+1 种基金Project(TS20130922)supported by the Taishan Scholar Foundation,ChinaProject(2014JC020)supported by the Fundamental Research Funds for the Central Universities of China
文摘Surface modification of medical implants was considered as an effective method to improve the cellular behaviors and the integration of tissue onto materials. The micro-nanostructured surface on the titanium alloy was prepared by laser treatment and multiple acid etching. The surface morphologies of different titanium alloy substrates were characterized by scanning electron microscopy (SEM). The effects of micro-nanostructured surfaces on the cellular responses were investigated in vitro by observing hydroxyapatite formation, cell morphology and cell adhesion. The results indicate that the micro-sized structure promoted the adhesion and proliferation of cultured osteoblasts. Furthermore, the micro-nanostructured surface was more conducive to cell adhension stretching compared with the micro-structured surface. All results suggest that the micro-nanostructured surface improved the biocompatibility and integration of tissue onto titanium alloy implants.
文摘采用数字微镜器件(DMD)无掩模光刻技术,以飞秒激光为光源,结合大面积拼接的方法快速制备了具有较高分辨率和毫米尺寸的大面积微纳结构。提出以单子场投影线扫描的方式进一步改善由于光场能量分布不均匀引起的结构边缘粗糙的问题,极大地降低了线条的边缘粗糙度,有效地控制了结构的精度。本研究以半导体领域常用的正性光刻胶为主要研究对象,实现了面积为7.4 mm 2的1μm等间距线阵列和面积为38.7 mm 2的10μm等间距线阵列结构的快速制备。本研究为大面积微纳结构制备提供了一种新方法,所制备结构可应用于气液流动、药物输运及晶体生长等领域。
基金supported by the Australia Research Council(ARC)through ARC Discovery Projects
文摘This study demonstrates a facile and efficient hydrothermal method to prepare spindle titanate(Li4Ti5O12 denoted as LTO)and/or carbon-LTO nanocomposites(CLTO),in which the LTO or C-LTO microspheres have diameters of a few micrometers,composed of numerous nanosheets with thickness of*30 nm and edge length of hundreds of nanometers.The morphology and size control of these nanoparticles could be achieved by varying experimental parameters including concentration of titanium butoxide,lithium hydroxide,and cetyltrimethylammonium bromide,as well as reaction temperature and time.These micro-nanostructures were characterized by several advanced techniques,such as transmission electron microscopy,scanning electron microscopy,X-ray diffraction,energy dispersive spectroscopic analysis,surface area,and electrochemical measurements.The LTO and C-LTO microstructures were examined in the charge–discharge capacity at a rate of 50 C,as well as the stability after 100 cycles at a rate of 10 C.The excellent capability may be attributed to good conductivity,large surface area,and stable assembly structure of such micro-nanostructures,which could be explored as a promising anode material for lithium-ion batteries.
基金This work was financially supported by National Natural Science Foundation of China(Nos.51775046&51875043&52005040)the China Postdoctoral Science Foundation(No.2019M660480)+1 种基金the Beijing Municipal Natural Sci-ence Foundation(JQ20014)The authors would also like to acknowledge support from the Fok Ying-Tong Education Foundation for Young Teachers in the Higher Education Insti-tutions of China(No.151052).
文摘Micro/nanostructured components play an important role in micro-optics and optical engineering,tribology and surface engineering,and biological and biomedical engineering,among other fields.Precision glass molding technology is the most efficient method of manufacturing micro/nanostructured glass components,the premise of which is meld manufacturing with complementary micro/nanostructures.Numerous mold manufacturing methods have been developed to fabricate extremely small and high-quality micro/nanostructures to satisfy the demands of functional micro/nanostructured glass components for various applications.Moreover,the service performance of the mold should also be carefully considered.This paper reviews a variety of technologies for manufacturing micro/nanostructured molds.The authors begin with an introduction of the extreme requirements of mold materials.The following section provides a detailed survey of the existing micro/nanostructured mold manufacturing techniques and their corresponding mold materials,including nonmechanical and mechanical methods.This paper concludes with a detailed discussion of the authors recent research on nickel-phosphorus(Ni-P)mold manufacturing and its service performance.
基金supported by the National Key Research and Development Program of China(No.2016YFB0601100)the Fundamental Research Funds for the Central Universities(No.FRFBD-16-008A)
文摘The peony-like CuO micro/nanostructures were fabricated by a facile hydrothermal approach. The peony- like CuO micro/nanostructures about 3 -5μm in diameter were assembled by CuO nanoplates. These CuO nanoplates, as the building block, were self-assembled into multilayer structures under the action of ethidene diamine, and then grew into uniform peony-like CuO architecture. The novel peony-like CuO micro/nanostructures exhibit a high cycling stability and improved rate capability. The peony-like CuO microJnanostructures electrodes show a high reversible capacity of 456 mAhJg after 200 cycles, much higher than that of the commercial CuO nanocrystals at a current 0.1 C. The excellent electrochemical performance of peony-like CuO micro/nanostructures might be ascribed to the unique assembly structure, which not only provide large electrode/electrolyte contact area to accelerate the lithiation reaction, but also the interval between the multilayer structures of CuO nanoplates electrode could provide enough interior space to accommodate the volume change during Li insertion and de-insertion process,