In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn...In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn alloy was investigated by OM,XRD,SEM,EBSD,tensile tests,and Erichsen test.The results showed that the average grain size and basal texture intensity of Mg-2Zn-0.2Mn alloys were remarkably decreased after Ca and Sm additions.0.64 wt.%Ca or 0.48 wt.%Sm addition significantly increased the tensile strength,ductility and formability.Moreover,the synergetic addition of Sm and Ca improved the ductility and formability of Mg-2Zn-0.2Mn alloy,which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition.The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability.展开更多
Owing to high power density and long cycle life,micro-supercapacitors(MSCs)are regarded as a prevalent energy storage unit for miniaturized electronics in modern life.A major bottleneck is achieving enhanced energy de...Owing to high power density and long cycle life,micro-supercapacitors(MSCs)are regarded as a prevalent energy storage unit for miniaturized electronics in modern life.A major bottleneck is achieving enhanced energy density without sacrificing both power density and cycle life.To this end,designing electrodes in a“smart”way has emerged as an effective strategy to achieve a trade-off between the energy and power densities of MSCs.In the past few years,considerable research efforts have been devoted to exploring new electrode materials for high capacitance,but designing clever configurations for electrodes has rarely been investigated from a structural point of view,which is also important for MSCs within a limited footprint area,in particular.This review article categorizes and arranges these“smart”design strategies of electrodes into three design concepts:layer-by-layer,scaffoldassisted and rolling origami.The corresponding strengths and challenges are comprehensively summarized,and the potential solutions to resolve these challenges are pointed out.Finally,the smart design principle of the electrodes of MSCs and key perspectives for future research in this field are outlined.展开更多
基金financially supported by the National Key Research and Development Program of China(Nos.2018YFA0702903,2016YFB0701204)the Fundamental Research Funds for the Central Universities,China(No.DUT20GF102)。
文摘In order to broaden the application of wrought Mg alloy sheets in the automotive industry,the influence of Ca and Sm alloying on the texture evolution,mechanical properties,and formability of a hot-rolled Mg-2Zn-0.2Mn alloy was investigated by OM,XRD,SEM,EBSD,tensile tests,and Erichsen test.The results showed that the average grain size and basal texture intensity of Mg-2Zn-0.2Mn alloys were remarkably decreased after Ca and Sm additions.0.64 wt.%Ca or 0.48 wt.%Sm addition significantly increased the tensile strength,ductility and formability.Moreover,the synergetic addition of Sm and Ca improved the ductility and formability of Mg-2Zn-0.2Mn alloy,which was due to the change of Ca distribution and further reduction of the size of Ca-containing particles by Sm addition.The results provided a possibility of replacing RE elements with Ca and Sm in Mg alloys which bring about outstanding mechanical properties and formability.
基金Sino‐German Center for Research Promotion,Grant/Award Number:GZ1579China Scholarship Council,Grant/Award Number:201908530218Deutsche Forschungsgemeinschaft,Grant/Award Number:LE 2249/5‐1。
文摘Owing to high power density and long cycle life,micro-supercapacitors(MSCs)are regarded as a prevalent energy storage unit for miniaturized electronics in modern life.A major bottleneck is achieving enhanced energy density without sacrificing both power density and cycle life.To this end,designing electrodes in a“smart”way has emerged as an effective strategy to achieve a trade-off between the energy and power densities of MSCs.In the past few years,considerable research efforts have been devoted to exploring new electrode materials for high capacitance,but designing clever configurations for electrodes has rarely been investigated from a structural point of view,which is also important for MSCs within a limited footprint area,in particular.This review article categorizes and arranges these“smart”design strategies of electrodes into three design concepts:layer-by-layer,scaffoldassisted and rolling origami.The corresponding strengths and challenges are comprehensively summarized,and the potential solutions to resolve these challenges are pointed out.Finally,the smart design principle of the electrodes of MSCs and key perspectives for future research in this field are outlined.