从一个新的角度出发,对应每个观测值引入一个识别变量,基于识别变量的后验概率提出一种新的粗差定位的Bayes方法,并构造相应的均值漂移模型给出粗差估算的Bayes方法。由于识别变量的后验分布往往是复杂的、非标准形式的,为此设计一种MCM...从一个新的角度出发,对应每个观测值引入一个识别变量,基于识别变量的后验概率提出一种新的粗差定位的Bayes方法,并构造相应的均值漂移模型给出粗差估算的Bayes方法。由于识别变量的后验分布往往是复杂的、非标准形式的,为此设计一种MCMC(Markov Chain Monte Carlo)抽样方法以计算识别变量的后验概率值。最后对一边角网进行了计算和分析。试验表明,本文给出的探测粗差的Bayes方法不仅充分利用了先验信息,而且克服了以往粗差定位方法的模糊性以及探测标准选择的问题,同时计算简便。展开更多
Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the...Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the point of maximum likelihood. The sampling region is a hyper-ellipsoid that consists of the sampling ellipse on each plane of main curvature in V-space. Thus, the sampling probability density function can be constructed by the sampling region center and ellipsoid axes. Several examples have shown the efficiency and generality of this method.展开更多
文摘从一个新的角度出发,对应每个观测值引入一个识别变量,基于识别变量的后验概率提出一种新的粗差定位的Bayes方法,并构造相应的均值漂移模型给出粗差估算的Bayes方法。由于识别变量的后验分布往往是复杂的、非标准形式的,为此设计一种MCMC(Markov Chain Monte Carlo)抽样方法以计算识别变量的后验概率值。最后对一边角网进行了计算和分析。试验表明,本文给出的探测粗差的Bayes方法不仅充分利用了先验信息,而且克服了以往粗差定位方法的模糊性以及探测标准选择的问题,同时计算简便。
文摘Based on the observation of importance sampling and second order information about the failure surface of a structure, an importance sampling region is defined in V-space which is obtained by rotating a U-space at the point of maximum likelihood. The sampling region is a hyper-ellipsoid that consists of the sampling ellipse on each plane of main curvature in V-space. Thus, the sampling probability density function can be constructed by the sampling region center and ellipsoid axes. Several examples have shown the efficiency and generality of this method.