The catalytic combustion of low concentration methane was systematically investigated in a pilot scale reverse flow reactor.The influences of cyclic period,the concentration of reactant and the space velocity on the o...The catalytic combustion of low concentration methane was systematically investigated in a pilot scale reverse flow reactor.The influences of cyclic period,the concentration of reactant and the space velocity on the operation performance of reactor were studied.The experimental results showed that,for the reverse flow reactor,cyclic period,the concentration of reactant and the space velocity were three important operation parameters that obviously affected the axial temperature profiles of reactor.It′s possible to maintain autothermal operation with high conversion of methane even though the methane concentration decreased to 0.5%.When the methane concentration was increased up to 0.8%,the highest temperature of catalyst bed was beyond 700 ℃.It suggests that the energy of the hot gas should be recovered and this reactive technology is able to be used in power production with low concentration methane.展开更多
Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has b...Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has been investigated in China since the 1990s. Advances in mechanism of CO2 enhanced CBM recovery (CO2-ECBM) in China are reviewed in light of certain aspects, such as the competitive multi-component gas adsorption, sorption-induced coal swelling/shrinkage and its potential effect on CBM production and numerical simulation for CO2-ECBM recovery. Newer investigations for improving the technology are discussed. It is suggested that a comprehensive feasibility demonstration in terms of geology, technology, economics and environment-carrying capacity is necessary for a successful application of the technology for CBM recovery in China. The demonstration should be car-ried out after more investigations into such facets as the control of coal components and structure to a competitive multi-component-gas adsorption, the behavior and essence of super-critical adsorption by coal of gas, environmental and safe feasi-bility of coal mining after CO2 injection and more extensive pilot tests for CO2-ECBM recovery.展开更多
Natural gas has been considered as the best transition fuel into the future carbon constraint world.The ever-increasing demand for natural gas has prompted expanding research and development activities worldwide for e...Natural gas has been considered as the best transition fuel into the future carbon constraint world.The ever-increasing demand for natural gas has prompted expanding research and development activities worldwide for exploring methane hydrates as a future energy resource.With its vast global resource volume(~3000 trillion cubic meter CH4)and high energy storage capacity(170 CH4 v/v methane hydrate),recovering energy from naturally-occurring methane hydrate has attracted both academic and industry interests to demonstrate the technical feasibility and economic viability.In this review paper,we highlight the recent advances in fundamental researches,seminal discoveries and implications from ongoing drilling programs and field production tests,the impending knowledge gaps and the future perspectives of recovering energy from methane hydrates.We further emphasize the current scientific,technological and economic challenges in realizing long-term commercial gas production from methane hydrate reservoir.The continuous growth of the corresponding experimental studies in China should target these specific challenges to narrow the knowledge gaps between laboratory-scale investigations and reservoir-scale applications.Furthermore,we briefly discuss both the environmental and geomechanical issues related to exploiting methane hydrate as the future energy resource and believe that they should be of paramount importance in the future development of novel gas production technologies.展开更多
文摘The catalytic combustion of low concentration methane was systematically investigated in a pilot scale reverse flow reactor.The influences of cyclic period,the concentration of reactant and the space velocity on the operation performance of reactor were studied.The experimental results showed that,for the reverse flow reactor,cyclic period,the concentration of reactant and the space velocity were three important operation parameters that obviously affected the axial temperature profiles of reactor.It′s possible to maintain autothermal operation with high conversion of methane even though the methane concentration decreased to 0.5%.When the methane concentration was increased up to 0.8%,the highest temperature of catalyst bed was beyond 700 ℃.It suggests that the energy of the hot gas should be recovered and this reactive technology is able to be used in power production with low concentration methane.
基金Projects 40730422 supported by the National Natural Science Foundation of China2006AA06Z231 by the Hi-tech Research and Development Program of Chinapart of a Sino-Aus-tralian special joint project of science and technology(407112365)
文摘Permeability of coal reservoirs in China is in general low. Injection of CO2 into coal seams is one of the potential ap-proaches for enhancing coalbed methane (CBM) production. The feasibility of this technology has been investigated in China since the 1990s. Advances in mechanism of CO2 enhanced CBM recovery (CO2-ECBM) in China are reviewed in light of certain aspects, such as the competitive multi-component gas adsorption, sorption-induced coal swelling/shrinkage and its potential effect on CBM production and numerical simulation for CO2-ECBM recovery. Newer investigations for improving the technology are discussed. It is suggested that a comprehensive feasibility demonstration in terms of geology, technology, economics and environment-carrying capacity is necessary for a successful application of the technology for CBM recovery in China. The demonstration should be car-ried out after more investigations into such facets as the control of coal components and structure to a competitive multi-component-gas adsorption, the behavior and essence of super-critical adsorption by coal of gas, environmental and safe feasi-bility of coal mining after CO2 injection and more extensive pilot tests for CO2-ECBM recovery.
基金The financial support from the National University of Singapore (R-279-000-542-114)the EDB and LRS for the industrial postgraduate programme (IPP) scholarship
文摘Natural gas has been considered as the best transition fuel into the future carbon constraint world.The ever-increasing demand for natural gas has prompted expanding research and development activities worldwide for exploring methane hydrates as a future energy resource.With its vast global resource volume(~3000 trillion cubic meter CH4)and high energy storage capacity(170 CH4 v/v methane hydrate),recovering energy from naturally-occurring methane hydrate has attracted both academic and industry interests to demonstrate the technical feasibility and economic viability.In this review paper,we highlight the recent advances in fundamental researches,seminal discoveries and implications from ongoing drilling programs and field production tests,the impending knowledge gaps and the future perspectives of recovering energy from methane hydrates.We further emphasize the current scientific,technological and economic challenges in realizing long-term commercial gas production from methane hydrate reservoir.The continuous growth of the corresponding experimental studies in China should target these specific challenges to narrow the knowledge gaps between laboratory-scale investigations and reservoir-scale applications.Furthermore,we briefly discuss both the environmental and geomechanical issues related to exploiting methane hydrate as the future energy resource and believe that they should be of paramount importance in the future development of novel gas production technologies.