期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
新闻语篇隐性评价意义的语篇发生研究 被引量:20
1
作者 王天华 《外语学刊》 CSSCI 北大核心 2012年第1期104-107,共4页
本文采取动态的方法,从语篇发生的视角,考察新闻语篇中隐性评价手段如何在语篇语境的影响下,随着语篇阶段和进程的发展,构成评价语义元关系,动态地建构新闻语篇的语篇价值和动态定位读者。
关键词 隐性评价 语篇发生 元关系 语篇价值
原文传递
评价理论视角下语域偏离的幽默功能 被引量:6
2
作者 郑盈 《外语学刊》 CSSCI 北大核心 2016年第2期28-31,共4页
本文从评价理论出发,分析美剧《老友记》中显性评价资源及隐性评价资源的互相作用方式和评价语义元关系在语域偏离语境中产生的幽默效果。分析表明,语域偏离带有很强的评价意义,语域偏离和评价手段相互作用在失谐中产生顺应,行使幽默功能。
关键词 语域偏离 评价理论 元关系 幽默 《老友记》
原文传递
Metarelation2vec:A Metapath-Free Scalable Representation Learning Model for Heterogeneous Networks
3
作者 Lei Chen Yuan Li +1 位作者 Yong Lei Xingye Deng 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第2期553-575,共23页
Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning models.However,any metapath... Metapaths with specific complex semantics are critical to learning diverse semantic and structural information of heterogeneous networks(HNs)for most of the existing representation learning models.However,any metapaths consisting of multiple,simple metarelations must be driven by domain experts.These sensitive,expensive,and limited metapaths severely reduce the flexibility and scalability of the existing models.A metapath-free,scalable representation learning model,called Metarelation2vec,is proposed for HNs with biased joint learning of all metarelations in a bid to address this problem.Specifically,a metarelation-aware,biased walk strategy is first designed to obtain better training samples by using autogenerating cooperation probabilities for all metarelations rather than using expert-given metapaths.Thereafter,grouped nodes by the type,a common and shallow skip-gram model is used to separately learn structural proximity for each node type.Next,grouped links by the type,a novel and shallow model is used to separately learn the semantic proximity for each link type.Finally,supervised by the cooperation probabilities of all meta-words,the biased training samples are thrown into the shallow models to jointly learn the structural and semantic information in the HNs,ensuring the accuracy and scalability of the models.Extensive experimental results on three tasks and four open datasets demonstrate the advantages of our proposed model. 展开更多
关键词 metarelation random walk heterogeneous network metapath representation learning
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部