Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits,with the exception of Carlin-type deposits and rare intrusion-related gold systems,there has been continuing debate...Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits,with the exception of Carlin-type deposits and rare intrusion-related gold systems,there has been continuing debate on their genesis.Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable.Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially- associated granitic intrusions and inconsistent temporal relationships.The most plausible,and widely accepted,models involve metamorphic fluids,but the source of these fluids is hotly debated.Sources within deeper segments of the supracrustal successions hosting the deposits,the underlying continental crust,and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents.The orogenic gold deposits of the giant Jiaodong gold province of China,in the delaminated North China Craton,contain ca.120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization.The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package,or the associated mantle wedge.This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks:basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic.Alternatively,if a holistic view is taken,Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history.The latter model satisfies all geological,geochronological,isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release,like many other subduction-related processes,are model-driven and remain uncertain.展开更多
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing peri...The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H2O-CO2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO2 melting temperatures(T(m,CO2)) of H2O-CO2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO2-phase densities being 0.50-0.86 g/cm-3.H2O-CO2 inclusions in Q2 have T(m,CO2) from-61.9℃ to-56.9℃,T(m,clath)from 1.3℃ to 9.5℃,T(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO2-phase densities being 0.48-0.89 g/cm-3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ-(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ-(18)O(H2O) values calculated from δ-(18)O of quartz range from-0.2‰ to 8.3‰(SM展开更多
METAMORPHIC fluids, an important type of the ore-forming fluids within the Earth’ s crust, are the necessary materials for metamorphic hydrothermal ore formation. Their direct products are varieties of synmetamorphic...METAMORPHIC fluids, an important type of the ore-forming fluids within the Earth’ s crust, are the necessary materials for metamorphic hydrothermal ore formation. Their direct products are varieties of synmetamorphic veins occurring in metamorphic rocks’. Studies on the genesis of these veins can be availablefor investigating the source material and formation processes of metamorphic hydrothermal deposit. Previous studies on metamorphic veins have focused mainly on their mineralogical, major elemental and oxygenisotopic compositions, and two different hypotheses have been advanced to account for metamorphicvein genesis. In this paper, we use rare-earth elemental method, together with field geological andpetrologic studies, to inquire into the origin of synmetamorphic veins occurring in Xingzi Group ofLushan, southeast China.展开更多
文摘Although the term orogenic gold deposit has been widely accepted for all gold-only lode-gold deposits,with the exception of Carlin-type deposits and rare intrusion-related gold systems,there has been continuing debate on their genesis.Early syngenetic models and hydrothermal models dominated by meteoric fluids are now clearly unacceptable.Magmatic-hydrothermal models fail to explain the genesis of orogenic gold deposits because of the lack of consistent spatially- associated granitic intrusions and inconsistent temporal relationships.The most plausible,and widely accepted,models involve metamorphic fluids,but the source of these fluids is hotly debated.Sources within deeper segments of the supracrustal successions hosting the deposits,the underlying continental crust,and subducted oceanic lithosphere and its overlying sediment wedge all have their proponents.The orogenic gold deposits of the giant Jiaodong gold province of China,in the delaminated North China Craton,contain ca.120 Ma gold deposits in Precambrian crust that was metamorphosed over 2000 million years prior to gold mineralization.The only realistic source of fluid and gold is a subducted oceanic slab with its overlying sulfide-rich sedimentary package,or the associated mantle wedge.This could be viewed as an exception to a general metamorphic model where orogenic gold has been derived during greenschist- to amphibolite-facies metamorphism of supracrustal rocks:basaltic rocks in the Precambrian and sedimentary rocks in the Phanerozoic.Alternatively,if a holistic view is taken,Jiaodong can be considered the key orogenic gold province for a unified model in which gold is derived from late-orogenic metamorphic devolatilization of stalled subduction slabs and oceanic sediments throughout Earth history.The latter model satisfies all geological,geochronological,isotopic and geochemical constraints but the precise mechanisms of auriferous fluid release,like many other subduction-related processes,are model-driven and remain uncertain.
基金funded by National Nature Science Foundation of China(41372096)
文摘The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H2O-CO2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO2 melting temperatures(T(m,CO2)) of H2O-CO2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO2-phase densities being 0.50-0.86 g/cm-3.H2O-CO2 inclusions in Q2 have T(m,CO2) from-61.9℃ to-56.9℃,T(m,clath)from 1.3℃ to 9.5℃,T(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO2-phase densities being 0.48-0.89 g/cm-3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ-(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ-(18)O(H2O) values calculated from δ-(18)O of quartz range from-0.2‰ to 8.3‰(SM
文摘METAMORPHIC fluids, an important type of the ore-forming fluids within the Earth’ s crust, are the necessary materials for metamorphic hydrothermal ore formation. Their direct products are varieties of synmetamorphic veins occurring in metamorphic rocks’. Studies on the genesis of these veins can be availablefor investigating the source material and formation processes of metamorphic hydrothermal deposit. Previous studies on metamorphic veins have focused mainly on their mineralogical, major elemental and oxygenisotopic compositions, and two different hypotheses have been advanced to account for metamorphicvein genesis. In this paper, we use rare-earth elemental method, together with field geological andpetrologic studies, to inquire into the origin of synmetamorphic veins occurring in Xingzi Group ofLushan, southeast China.