The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region ...The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s deg展开更多
The Yangla Copper Ore Field in Northwest Yunnan Province, China, is a large region of deposits dominated by copper-bearing skarns whose origin remains debatable despite numerous studies over the past two decades. We h...The Yangla Copper Ore Field in Northwest Yunnan Province, China, is a large region of deposits dominated by copper-bearing skarns whose origin remains debatable despite numerous studies over the past two decades. We have investigated the geological and geochemical characteristics of the skarns using field and microscopic observations combined with chemical analyses. The results show that the skarns fall into two categories. The first category is metamorphic skarn, which constitute the majority (〉90%) of skarns in the deposit and is characterized by stratiform occurrences conformable to Devonian host strata, anhydrous mineral assemblages such as diopside+hedenbergite+quartz, widespread banded structure, fine-grainsize (〈200 μm) and preserved tuff-like textures. Whole-rock major element compositions, REE and trace-element compositions resemble those of the country rock slates or schists. The skarn layers occur at variable distances (0-2 000 m) from Indosinian plutonic bodies. Fracture-filling veins and/or alteration halos are scarce or absent in or near the skarn layers. This category of skarn probably formed by isochemical contact metamorphism of fine calcareous clastic sediments or impure carbonate rocks during emplacement of the plutonic bodies with no significant material migration by hydrothermal fluids involved during the process, in which case metallic enrichment of the skarn layers was present in the protolith of the skarn. The second category is metasomatic skarn with relatively coarse-grained textures (200-〉1 000 μm) and volatile-reach assemblages such as diopside+tremolite+scapolite at or near the igneous contact zones, which constitutes only a minor pro-portion of ore compared with metamorphic skarn. Taking into consideration diverse existing opinions about the genetic type of the deposit, we suggest that the geological and whole-rock geochemical characteristics of the skarus are consistent with a metamorphosed and metasomatized SEDEX (sedimentary exhalative deposit) 展开更多
基金supported by Orient Resources Ltd.College of Earth Sciences,Jilin University。
文摘The Dashuigou tellurium deposit is the world’s only known independent tellurium deposit.By restoring metamorphic rocks’protolith,we seek to understand not only the development and evolution trajectory of the region but also the origin of the relevant deposits.While there are many ways to restore metamorphic rocks’protolith,we take the host metamorphic rocks of Dashuigou tellurium deposit and leverage various petrochemical eigenvalues and related diagrams previously proposed to reveal the deposit’s host metamorphic rocks’protolith.The petrochemical eigenvalues include molecular number,Niggli’s value,REE parity ratio,CaO/Al_(2)O_(3)ratio,Fe^(3+) /(Fe^(3+) -+Fe^(2+) )ratio,chondrite-normalized REE value,logarithmic REE value,various REE eigenvalues including scandium,Eu/Sm ratio,total REE amount,light and heavy REEs,δEu,Eu anomaly,Sm/Nd ratio,and silicon isotope δ^(30) SiNBS-29‰,etc.The petrochemical plots include ACMs,100 mg-c-(al+alk),SiO_(2)-(Na_(2)O+K_(2)O),(al+fm)-(c+alk)versus Si,FeO+Fe_(2)O^(3+) TiO)-Al_(2)O_(3)-MgO,c-mg,Al_(2)O_(3)-(Na_(2)O+K_(2)O),chondrite-normalized REE model,La/Yb-REE,and Sm/Nd ratio,etc.On the basis of these comprehensive analyses,the following conclusions are drawn,starting from the many mantle-derived types of basalt developed in the study area of different geological ages,combined with the previously published research results on the deposit s fluid inclusions and sulfur and lead isotopes.The deposit is formed by mantle degassing in the form of a mantle plume in the late Yanshanian orogeny.The degassed fluids are rich in nano-sc ale substances including Fe,Te,S,As,Bi,Au,Se,H_(2),CO_(2),N_(2),H_(2)O,and CH_(4),which are enriched by nano-effect,and then rise to a certain part of the crust in the form of mantle plume along the lithospheric fault to form the deposit.The ultimate power for tellurium mineralization was from H_(2)flow with high energy,which was produced through radiation from the melted iron of the Earth’s outer core.The H,flow results in the Earth’s deg
基金financially supported by the China Geological Survey(No.12120113079400)
文摘The Yangla Copper Ore Field in Northwest Yunnan Province, China, is a large region of deposits dominated by copper-bearing skarns whose origin remains debatable despite numerous studies over the past two decades. We have investigated the geological and geochemical characteristics of the skarns using field and microscopic observations combined with chemical analyses. The results show that the skarns fall into two categories. The first category is metamorphic skarn, which constitute the majority (〉90%) of skarns in the deposit and is characterized by stratiform occurrences conformable to Devonian host strata, anhydrous mineral assemblages such as diopside+hedenbergite+quartz, widespread banded structure, fine-grainsize (〈200 μm) and preserved tuff-like textures. Whole-rock major element compositions, REE and trace-element compositions resemble those of the country rock slates or schists. The skarn layers occur at variable distances (0-2 000 m) from Indosinian plutonic bodies. Fracture-filling veins and/or alteration halos are scarce or absent in or near the skarn layers. This category of skarn probably formed by isochemical contact metamorphism of fine calcareous clastic sediments or impure carbonate rocks during emplacement of the plutonic bodies with no significant material migration by hydrothermal fluids involved during the process, in which case metallic enrichment of the skarn layers was present in the protolith of the skarn. The second category is metasomatic skarn with relatively coarse-grained textures (200-〉1 000 μm) and volatile-reach assemblages such as diopside+tremolite+scapolite at or near the igneous contact zones, which constitutes only a minor pro-portion of ore compared with metamorphic skarn. Taking into consideration diverse existing opinions about the genetic type of the deposit, we suggest that the geological and whole-rock geochemical characteristics of the skarus are consistent with a metamorphosed and metasomatized SEDEX (sedimentary exhalative deposit)