Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, ...Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, we examine the ground state of the three-band Hubbard model (d-p model) that explicitly includes oxygen p orbitals. We consider the half-filled case with the large on-site Coulomb repulsion Ud by using the variational Monte Carlo method. The ground state is insulating when Ud is large at half-filling. The ground state undergoes a transition from a metal to a Mott insulator when the level difference εp-εd is increased.展开更多
In correlated oxides,collaborative manipulation on light intensity,wavelength,pulse duration and polarization has yielded many exotic discoveries,such as phase transitions and novel quantum states.In view of potential...In correlated oxides,collaborative manipulation on light intensity,wavelength,pulse duration and polarization has yielded many exotic discoveries,such as phase transitions and novel quantum states.In view of potential optoelectronic applications,tailoring long-lived static properties by light-induced effects is highly desirable.So far,the polarization state of light has rarely been reported as a control parameter for this purpose.Here,we report polarization-dependent metal-to-insulator transition(MIT)in phaseseparated manganite thin films,introducing a new degree of freedom to control static MIT.Specifically,we observed giant photoinduced resistance jumps with striking features:(1)a single resistance jump occurs upon a linearly polarized light incident with a chosen polarization angle,and a second resistance jump occurs when the polarization angle changes;(2)the amplitude of the second resistance jump depends sensitively on the actual change of the polarization angles.Linear transmittance measurements reveal that the origin of the above phenomena is closely related to the coexistence of anisotropic micro-domains.Our results represent a first step to utilize light polarization as an active knob to manipulate static phase transitions,pointing towards new pathways for nonvolatile optoelectronic devices and sensors.展开更多
We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling betwee...We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and experimental results including electrical resistivity, magnetoresistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal-insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- frequency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.展开更多
The effect of Pr and Gd doping on the transport properties of Cu-deficient YBCO superconductors has been studied. Two series of Y1Ba2Cu3 - xRxO7 - δ, where R = Pr or Gd, were prepared by the conventional solid-state ...The effect of Pr and Gd doping on the transport properties of Cu-deficient YBCO superconductors has been studied. Two series of Y1Ba2Cu3 - xRxO7 - δ, where R = Pr or Gd, were prepared by the conventional solid-state reaction technique. Resistance measurements showed a suppression of Tc with increasing of Pr- and Gd-contents in addition to a normal-state metal-to-insulator transition. Moreover, a superconductor-to-insulator transition has been observed at ambient pressure for temperatures less than 50 K for Pr with x = 0.3 and for Gd with x > 0.3. The overall complex behaviours of the resistivity data have been preliminary explained in terms of localization of charge carriers, structural disorders, and magnetic ordering of magnetic moments.展开更多
The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics app...The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications,e.g.ocean electric field sensor,bio-sensor,and neuron synapse logical devices.Nevertheless,these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO_(3)with flexibly adjustable rare-earth compositions and electronic structures.Herein,we demonstrate a metal-organic decompositions(MOD)approach that can effectively grow metastable RENiO_(3)covering a large variety of the rare-earth composition without introducing any vacuum process.Unlike the previous chemical growths for RENiO_(3)relying on strict interfacial coherency that limit the film thickness,the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions.Further indicated by positron annihilation spectroscopy,the RENiO_(3)grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers,as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis.This effectively enlarges the magnitude in the resistance regulations in particular for RENiO_(3)with lighter RE,shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.展开更多
The influence of aluminum doping at Mn-site in nanograin compound La0.8Sr0.2MnO3 was investigated based on X-ray diffraction, scanning electron microscope and resistivity measurement, in the light of structure and tra...The influence of aluminum doping at Mn-site in nanograin compound La0.8Sr0.2MnO3 was investigated based on X-ray diffraction, scanning electron microscope and resistivity measurement, in the light of structure and transport properties. The results showed that Al doping was favorable to the globurizing of powders and grain size uniformity, however, depressed the particles growth. The resistivity of system increased rapidly and the metal-insulator transition temperature (TIM) and room temperature magnetoresistance decreased as the aluminum concentration increased. In the T>TIM region, the current carriers were moving in variable range transition mode. The resistivity of La0.8Sr0.2Mn1-xAlxO3 for x=0.05 and 0.1 satisfied metal model in the T<TIM region. The characteristics of the transport behavior for aluminum doping were analyzed in terms of destroying the double exchange channel of Mn3+-O-Mn4+, distortion of the cell lattice and change of powder particles size and shape.展开更多
The results of the metal-insulator transition (MIT) induced by impurity concentration are presented in the case of metallic and insulating samples 70Ge:Ga p-type. The eight samples studied have Ga concentrations N ...The results of the metal-insulator transition (MIT) induced by impurity concentration are presented in the case of metallic and insulating samples 70Ge:Ga p-type. The eight samples studied have Ga concentrations N ranging from 1.848 × 1017 to 1.912 × 10^17 cm-3. The conductivity measurements were carried out at low temperature in the range 1 to 0.019 K. We provide physical explanations to explain the behaviors of the temperature dependence of the electrical conductivity in both sides of the MIT. The data are for a 70Ge:Ga sample prepared and reported by Itoh et aL in Ref. [Itoh K M, Watanabe M, Ootuka Y, et al. J Phys Soc Jpn, 2004, 73(1): 173].展开更多
It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fer...It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom---charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS "electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.展开更多
Oxygen usually plays crucial roles in tuning the phase structures and functionalities of complex oxides such as high temperature superconductivity, colossal magnetoresistance, catalysis, etc. Effective and considerabl...Oxygen usually plays crucial roles in tuning the phase structures and functionalities of complex oxides such as high temperature superconductivity, colossal magnetoresistance, catalysis, etc. Effective and considerable control of the oxygen content in those functional oxides could be highly desired. Here, using perovskite manganite(La0.5Sr0.5)MnO3 as a paradigm, we develop a new pathway to synthesize the epitaxial thin films assisted by an in-situ chemical process, where the oxygen content can be precisely controlled by varying oxidative activity tuned by the atmospheric temperature(Tatm)during the growth. A hidden metal-insulator transition(MIT)emerges due to the phase competition, which is never shown in the phase diagram of this classic manganite. The oxygenmediated interaction between Mn ions together with the change of carrier density might be responsible for this emerging phase, which is compatible with the results of firstprinciple calculations. This work demonstrates that, apart from traditional cation doping, a precise modulation of anion(O2-, S2-, etc.) may provide a new strategy to control phase structures and functionalities of epitaxial compound thin films.展开更多
Near the metal-insulator transition, the Hall coefficient R of metal-insulator composites (M-I composite) can be up to 104 times larger than that in the pure metal called Giant Hall effect. Applying the physical model...Near the metal-insulator transition, the Hall coefficient R of metal-insulator composites (M-I composite) can be up to 104 times larger than that in the pure metal called Giant Hall effect. Applying the physical model for alloys with phase separation developed in [1] [2], we conclude that the Giant Hall effect is caused by an electron transfer away from the metallic phase to the insulating phase occupying surface states. These surface states are the reason for the granular structure typical for M-I composites. This electron transfer can be described by [1] [2], provided that long-range diffusion does not happen during film production (n is the electron density in the phase A. u<sub>A </sub>and u<sub>B</sub> are the volume fractions of the phase A (metallic phase) and phase B (insulator phase). β is a measure for the average potential difference between the phases A and B). A formula for calculation of R of composites is derived and applied to experimental data of granular Cu<sub>1-y</sub>(SiO<sub>2</sub>)<sub>y</sub> and Ni<sub>1-y</sub>(SiO<sub>2</sub>)<sub>y</sub> films.展开更多
Bi_(2)O_(2) Se is a promising material for next-generation semiconducting electronics.It exhibits premature metallicity on the introduction of a tiny amount of electrons,the physics behind which remains elusive.Here w...Bi_(2)O_(2) Se is a promising material for next-generation semiconducting electronics.It exhibits premature metallicity on the introduction of a tiny amount of electrons,the physics behind which remains elusive.Here we report on transport and dielectric measurements in Bi_(2)O_(2) Se single crystals at various carrier densities.The temperature-dependent resistivity(p)indicates a smooth evolution from the semiconducting to the metallic state.The critical concentration for the metal-insulator transition(MIT)to occur is extraordinarily low(nc~10^(16) cm^(-3)).The relative permittivity of the insulating sample is huge(∈r≈155(10))and varies slowly with temperature.Combined with the light effective mass,a long effective Bohr radius(a_(B)^(*)≈36(2)nm)is derived,which provides a reasonable interpretation of the metallic prematurity according to Mott’s criterion for MITs.The high electron mobility(μ)at low temperatures may result from the screening of ionized scattering centers due to the huge∈r.Our findings shed light on the electron dynamics in two dimensional(2D)Bi_(2)O_(2) Se devices.展开更多
Micro-patterning is considered to be a promising way to analyze phase-separated manganites. We investigate resistance in micro-patterned La0.325Pr0.3Ca0.375MnO3 wires with width of 10 μm, which is comparable to the p...Micro-patterning is considered to be a promising way to analyze phase-separated manganites. We investigate resistance in micro-patterned La0.325Pr0.3Ca0.375MnO3 wires with width of 10 μm, which is comparable to the phase separation scale in this material. A reentrant of insulating state at the metal-insulator temperature Tp is observed and a giant resistance change of over 90% driven by electric field is achieved by suppression of this insulating state. This resistance change is mostly reversible, The I-V characteristics are measured in order to analyze the origin of the giant electroresistance and two possible explanations are proposed.展开更多
Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal-insulator transition properties of the vanadium dioxide t...Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal-insulator transition properties of the vanadium dioxide thin films were inves- tigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (111) to (011 ) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal-insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal-insulator transition.展开更多
The magnetron sputtered La0.7Sr0.3MnO3 films were implanted with different doses (5 ′ 1015 ions×cm?2 and 5 ′ 1016 ions×cm-2) of Al ions at different negative pulsed voltages (30 kV and 50 kV) by plasma bas...The magnetron sputtered La0.7Sr0.3MnO3 films were implanted with different doses (5 ′ 1015 ions×cm?2 and 5 ′ 1016 ions×cm-2) of Al ions at different negative pulsed voltages (30 kV and 50 kV) by plasma based ion implantation and then annealed at 973 K for 1 h in air. The microstructure, surface morphologies, surface roughness, metal-insulator transition and room temperature emittance properties of the post-implantation annealed films were investigated and compared with those of the La0.7Sr0.3MnO3 film annealed at 973 K for 1 h in air. The results indicate that the post- implantation annealed films show single perovskite phase and obvious (100) preferred orientation growth. The Mn-O bond length, surface roughness and metal-insulator transition temperature (TMI) of the films can be effectively adjusted by changing implantation voltage or implantation dose of Al ions. However, the change of implantation parameters just has a small effect on room temperature emittance of the films. Compared with the annealed film, the post-implantation annealed films have shorter Mn-O bond length and lower room temperature emittance. The TMI of the films implanted at low voltage is lower than that of the annealed film, which mainly results from the degradation of oxidization during annealing process and the part displacement of Mn3+-O2+- Mn4+ double exchange channels by Al3+-O2?-Mn4+. The post-implanted annealed film implanted at 50 kV/5 ′ 1016 ions×cm-2 has a higher TMI than the annealed film, which is 247 K. The increase of TMI of the film implanted with high dose of Al ions at high voltage can be attributed to the improvement of microstructure.展开更多
A comparative study for two different series, La0.67Ca0.33Mn1-xCrxO3 and La0.67+xCa0.33-x Mn1-xCrxO3 is performed with x changing from 0.04 to 0.08 through measurements of zero-field resistivity (p), magnetoresista...A comparative study for two different series, La0.67Ca0.33Mn1-xCrxO3 and La0.67+xCa0.33-x Mn1-xCrxO3 is performed with x changing from 0.04 to 0.08 through measurements of zero-field resistivity (p), magnetoresistance (MR) and ac susceptibility (Z) as functions of temperature (T). For the second group, a single insulator-metal transition was characterized by the resistivity maximum appears in p vs. T curve. For the first group, besides the resistivity peak appearing at higher temperatures, the sample shows evidence for the existence of another peak appearing at lower temperatures. Compared to the first group, the second group shows a significant enhancement in MR effect, while the measurement ofΧ-T dependence does not display obvious differences for the two series. Different behaviors observed in the two series are discussed by considering possible exchange interaction between Mn^3- ion and Cr^3- ion.展开更多
In this paper, we present a monolithic integration of a self-protected AlGaN/GaN metal-insulator field-effect transistor (MISFET). An integrated field-controlled diode on the drain side of the AlGaN/GaN MISFET featu...In this paper, we present a monolithic integration of a self-protected AlGaN/GaN metal-insulator field-effect transistor (MISFET). An integrated field-controlled diode on the drain side of the AlGaN/GaN MISFET features a self- protected function for a reverse bias. This diode takes advantage of the recessed-barrier enhancement-mode technique to realize an ultra-low voltage drop and a low turn-ON voltage. In the smart monolithic integration, this integrated diode can block a reverse bias (〉 70 V/μm) and suppress the leakage current (〈 5 × 10-11 A/mm). Compared with conventional monolithic integration, the numerical results show that the MISET integrated with a field-controlled diode leads to a good performance for smart power integration. And the power loss is lower than 50% in conduction without forward current degeneration.展开更多
Scaling theory predicts complete localization in d = 2 in quantum systems belonging to the orthogonal class(i.e., with timereversal symmetry and spin-rotation symmetry). The conductance g behaves as g^exp(-L/l) with s...Scaling theory predicts complete localization in d = 2 in quantum systems belonging to the orthogonal class(i.e., with timereversal symmetry and spin-rotation symmetry). The conductance g behaves as g^exp(-L/l) with system size L and localization length l in the strong disorder limit. However, classical systems can always have metallic states in which Ohm’s law shows a constant g in d=2. We study a two-dimensional quantum percolation model by controlling dephasing effects. The numerical investigation of g aims at simulating a quantum-to-classical percolation evolution. An unexpected metallic phase, where g increases with L, generates immense interest before the system becomes completely classical. Furthermore, the analysis of the scaling plot of g indicates a metal-insulator crossover.展开更多
With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room te...With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature.展开更多
The effect of Dy substitution for La site in layered manganese oxides La1.3-xDyxSr1.7Mn2O7 on the magnetic and electrical properties has been investigated. With the La3+ substituting by Dy^3+, the long range three-d...The effect of Dy substitution for La site in layered manganese oxides La1.3-xDyxSr1.7Mn2O7 on the magnetic and electrical properties has been investigated. With the La3+ substituting by Dy^3+, the long range three-dimensional ferromagnetism transition and the insulator-metal transition disappear. These effects are attributed to the lattice distortion due to the substitution of the smaller Dy^3+. Addtionally, the small Dy^3+ is inclined to occupy the R site which is in the rock-salt layer, then the distribution of La, Sr, Dy ions in Dy-doped sample should be more orderly than that in Lal.3Sr1.7Mn2O7, so there is only one insulator-metal transition in the ρ-T curve of the sample with x = 0.05 and x = 0.1.展开更多
The one-electron spectral function of a frustrated Hubbard chain is computed by making use of the cluster perturbation theory. The spectral weight we found turns out to be strongly dependent on the frustrating next-ne...The one-electron spectral function of a frustrated Hubbard chain is computed by making use of the cluster perturbation theory. The spectral weight we found turns out to be strongly dependent on the frustrating next-nearest-neighbor hopping t′. A frustration induced pseudogap arises when the system evolves from a gapful Mott insulator to a gapless conductor for an intermediate value of the frustration parameter |t′|. Furthermore, the opening of a pseudogap in the density of states already in the metallic side leads to a continuous opening of the true gap in the insulator. For the hole-doped case, the pseudogap is pinned at the Fermi energy, while the Mott gap is shifted in energy with increasing Hubbard interaction U. The separation of the pseudogap and Mort gap in the hole-doped system demonstrates the validity of the existence of a pseudogap.展开更多
文摘Electron correlation plays a key role in high-temperature cuprate superconductors. Material-parameter dependence of cuprates is important to clarify the mechanism of high temperature superconductivity. In this study, we examine the ground state of the three-band Hubbard model (d-p model) that explicitly includes oxygen p orbitals. We consider the half-filled case with the large on-site Coulomb repulsion Ud by using the variational Monte Carlo method. The ground state is insulating when Ud is large at half-filling. The ground state undergoes a transition from a metal to a Mott insulator when the level difference εp-εd is increased.
基金supported by the National Key Research and Development Program of China(2022YFA1403300 and 2020YFA0309100)the National Natural Science Foundation of China(11991060,12074075,12074073,12074071,12074080,and 12274088)+3 种基金the Shanghai Municipal Science and Technology Major Project(2019SHZDZX01)the Shanghai Municipal Natural Science Foundation(20501130600,22ZR1408100,22ZR1407400,and 23ZR1407200)support from the National Key Research and Development Program of China(2021YFA1400503 and 2021YFA1400202)the National Natural Science Foundation of China(12125403,11874123,and 12221004).
文摘In correlated oxides,collaborative manipulation on light intensity,wavelength,pulse duration and polarization has yielded many exotic discoveries,such as phase transitions and novel quantum states.In view of potential optoelectronic applications,tailoring long-lived static properties by light-induced effects is highly desirable.So far,the polarization state of light has rarely been reported as a control parameter for this purpose.Here,we report polarization-dependent metal-to-insulator transition(MIT)in phaseseparated manganite thin films,introducing a new degree of freedom to control static MIT.Specifically,we observed giant photoinduced resistance jumps with striking features:(1)a single resistance jump occurs upon a linearly polarized light incident with a chosen polarization angle,and a second resistance jump occurs when the polarization angle changes;(2)the amplitude of the second resistance jump depends sensitively on the actual change of the polarization angles.Linear transmittance measurements reveal that the origin of the above phenomena is closely related to the coexistence of anisotropic micro-domains.Our results represent a first step to utilize light polarization as an active knob to manipulate static phase transitions,pointing towards new pathways for nonvolatile optoelectronic devices and sensors.
基金the National NaturalScience Foundation of China (Grant No. 59801006) the Key Teacher Supporting Project (Grant No. G00032) +1 种基金and the Starting Foundation of Returned Researchers of the National Education Committee and Tianjin Youth Science Foundatio
文摘We review the recently discovered tunnel-type giant magnetoresistance (GMR) in ferromagnetic metal-insulator granular thin films, which is the magnetoresistance (MR) associated with the spin-dependent tunneling between two ferromagnetic metal particles. The theoretical and experimental results including electrical resistivity, magnetoresistance and their temperature dependence are described. Limitations to the applications of the ferromagnetic metal-insulator granular films are also discussed. Additionally, a brief survey of another two magnetic properties, high- frequency property and giant Hall effect (GHE) associated strongly with the granular structures is also presented.
文摘The effect of Pr and Gd doping on the transport properties of Cu-deficient YBCO superconductors has been studied. Two series of Y1Ba2Cu3 - xRxO7 - δ, where R = Pr or Gd, were prepared by the conventional solid-state reaction technique. Resistance measurements showed a suppression of Tc with increasing of Pr- and Gd-contents in addition to a normal-state metal-to-insulator transition. Moreover, a superconductor-to-insulator transition has been observed at ambient pressure for temperatures less than 50 K for Pr with x = 0.3 and for Gd with x > 0.3. The overall complex behaviours of the resistivity data have been preliminary explained in terms of localization of charge carriers, structural disorders, and magnetic ordering of magnetic moments.
基金financially supported by the National Key Research and Development Program of China(No.2021YFA0718900)National Natural Science Foundation of China(Nos.62074014,52073090,and 52103284)。
文摘The multiple quantum transitions within d-band correlation oxides such as rare-earth nickelates(RENiO_(3))triggered by critical temperatures and/or hydrogenation opened up a new paradigm for correlated electronics applications,e.g.ocean electric field sensor,bio-sensor,and neuron synapse logical devices.Nevertheless,these applications are obstructed by the present ineffectiveness in the thin film growth of the metastable RENiO_(3)with flexibly adjustable rare-earth compositions and electronic structures.Herein,we demonstrate a metal-organic decompositions(MOD)approach that can effectively grow metastable RENiO_(3)covering a large variety of the rare-earth composition without introducing any vacuum process.Unlike the previous chemical growths for RENiO_(3)relying on strict interfacial coherency that limit the film thickness,the MOD growth using reactive isooctanoate percussors is tolerant to lattice defects and therefore achieves comparable film thickness to vacuum depositions.Further indicated by positron annihilation spectroscopy,the RENiO_(3)grown by MOD exhibit large amount of lattice defects that improves their hydrogen incorporation amount and electron transfers,as demonstrated by the resonant nuclear reaction analysis and near edge X-ray absorption fine structure analysis.This effectively enlarges the magnitude in the resistance regulations in particular for RENiO_(3)with lighter RE,shedding a light on the extrinsic regulation of the hydrogen induced quantum transitions for correlated oxides semiconductors kinetically via defect engineering.
基金Project supported bythe Programfor New Century Excellent Talents in University
文摘The influence of aluminum doping at Mn-site in nanograin compound La0.8Sr0.2MnO3 was investigated based on X-ray diffraction, scanning electron microscope and resistivity measurement, in the light of structure and transport properties. The results showed that Al doping was favorable to the globurizing of powders and grain size uniformity, however, depressed the particles growth. The resistivity of system increased rapidly and the metal-insulator transition temperature (TIM) and room temperature magnetoresistance decreased as the aluminum concentration increased. In the T>TIM region, the current carriers were moving in variable range transition mode. The resistivity of La0.8Sr0.2Mn1-xAlxO3 for x=0.05 and 0.1 satisfied metal model in the T<TIM region. The characteristics of the transport behavior for aluminum doping were analyzed in terms of destroying the double exchange channel of Mn3+-O-Mn4+, distortion of the cell lattice and change of powder particles size and shape.
文摘The results of the metal-insulator transition (MIT) induced by impurity concentration are presented in the case of metallic and insulating samples 70Ge:Ga p-type. The eight samples studied have Ga concentrations N ranging from 1.848 × 1017 to 1.912 × 10^17 cm-3. The conductivity measurements were carried out at low temperature in the range 1 to 0.019 K. We provide physical explanations to explain the behaviors of the temperature dependence of the electrical conductivity in both sides of the MIT. The data are for a 70Ge:Ga sample prepared and reported by Itoh et aL in Ref. [Itoh K M, Watanabe M, Ootuka Y, et al. J Phys Soc Jpn, 2004, 73(1): 173].
基金Project supported by the National Basic Research Program of China(Grant No.2011CB921801)the National Natural Science Foundation of China(Grant Nos.91121002and11274071)+1 种基金US DOE Office of Basic Energy Sciences,Scientific User Facilities Division,and the US DOE grant DE-SC0002136the US DOE Office of Basic Energy Sciences,Materials Sciences and Engineering Division,through the Oak Ridge National Laboratory
文摘It is becoming increasingly clear that the exotic properties displayed by correlated electronic materials such as high- Tc superconductivity in cuprates, colossal magnetoresistance (CMR) in manganites, and heavy-fermion compounds are intimately related to the coexistence of competing nearly degenerate states which couple simultaneously active degrees of freedom---charge, lattice, orbital, and spin states. The striking phenomena associated with these materials are due in a large part to spatial electronic inhomogeneities, or electronic phase separation (EPS). In many of these hard materials, the functionality is a result of the soft electronic component that leads to self-organization. In this paper, we review our recent work on a novel spatial confinement technique that has led to some fascinating new discoveries about the role of EPS in manganites. Using lithographic techniques to confine manganite thin films to length scales of the EPS domains that reside within them, it is possible to simultaneously probe EPS domains with different electronic states. This method allows for a much more complete view of the phases residing in a material and gives vital information on phase formation, movement, and fluctuation. Pushing this trend to its limit, we propose to control the formation process of the EPS using external local fields, which include magnetic exchange field, strain field, and electric field. We term the ability to pattern EPS "electronic nanofabrication." This method allows us to control the global physical properties of the system at a very fundamental level, and greatly enhances the potential for realizing true oxide electronics.
基金financially supported by the National Key Research and Development Program of China (2016YFA0302300)the support from the National Natural Science Foundation of China (51332001)the Fundamental Research Funds for the Central Universities (2017EYT26)
文摘Oxygen usually plays crucial roles in tuning the phase structures and functionalities of complex oxides such as high temperature superconductivity, colossal magnetoresistance, catalysis, etc. Effective and considerable control of the oxygen content in those functional oxides could be highly desired. Here, using perovskite manganite(La0.5Sr0.5)MnO3 as a paradigm, we develop a new pathway to synthesize the epitaxial thin films assisted by an in-situ chemical process, where the oxygen content can be precisely controlled by varying oxidative activity tuned by the atmospheric temperature(Tatm)during the growth. A hidden metal-insulator transition(MIT)emerges due to the phase competition, which is never shown in the phase diagram of this classic manganite. The oxygenmediated interaction between Mn ions together with the change of carrier density might be responsible for this emerging phase, which is compatible with the results of firstprinciple calculations. This work demonstrates that, apart from traditional cation doping, a precise modulation of anion(O2-, S2-, etc.) may provide a new strategy to control phase structures and functionalities of epitaxial compound thin films.
文摘Near the metal-insulator transition, the Hall coefficient R of metal-insulator composites (M-I composite) can be up to 104 times larger than that in the pure metal called Giant Hall effect. Applying the physical model for alloys with phase separation developed in [1] [2], we conclude that the Giant Hall effect is caused by an electron transfer away from the metallic phase to the insulating phase occupying surface states. These surface states are the reason for the granular structure typical for M-I composites. This electron transfer can be described by [1] [2], provided that long-range diffusion does not happen during film production (n is the electron density in the phase A. u<sub>A </sub>and u<sub>B</sub> are the volume fractions of the phase A (metallic phase) and phase B (insulator phase). β is a measure for the average potential difference between the phases A and B). A formula for calculation of R of composites is derived and applied to experimental data of granular Cu<sub>1-y</sub>(SiO<sub>2</sub>)<sub>y</sub> and Ni<sub>1-y</sub>(SiO<sub>2</sub>)<sub>y</sub> films.
基金supported by the National Natural Science Foundation of China(Grant No.11904294)the Zhejiang Provincial Natural Science Foundation of China(Grant No.LQ19A040005)the foundation of Westlake Multidisciplinary Research Initiative Center(MRIC)(Grant No.MRIC20200402)。
文摘Bi_(2)O_(2) Se is a promising material for next-generation semiconducting electronics.It exhibits premature metallicity on the introduction of a tiny amount of electrons,the physics behind which remains elusive.Here we report on transport and dielectric measurements in Bi_(2)O_(2) Se single crystals at various carrier densities.The temperature-dependent resistivity(p)indicates a smooth evolution from the semiconducting to the metallic state.The critical concentration for the metal-insulator transition(MIT)to occur is extraordinarily low(nc~10^(16) cm^(-3)).The relative permittivity of the insulating sample is huge(∈r≈155(10))and varies slowly with temperature.Combined with the light effective mass,a long effective Bohr radius(a_(B)^(*)≈36(2)nm)is derived,which provides a reasonable interpretation of the metallic prematurity according to Mott’s criterion for MITs.The high electron mobility(μ)at low temperatures may result from the screening of ionized scattering centers due to the huge∈r.Our findings shed light on the electron dynamics in two dimensional(2D)Bi_(2)O_(2) Se devices.
基金supported by the National Basic Research Program of China(Grant Nos.2011CBA00106 and 2014CB921401)the National Natural Science Foundation of China(Grant Nos.11174342,91321208,and 11374344)
文摘Micro-patterning is considered to be a promising way to analyze phase-separated manganites. We investigate resistance in micro-patterned La0.325Pr0.3Ca0.375MnO3 wires with width of 10 μm, which is comparable to the phase separation scale in this material. A reentrant of insulating state at the metal-insulator temperature Tp is observed and a giant resistance change of over 90% driven by electric field is achieved by suppression of this insulating state. This resistance change is mostly reversible, The I-V characteristics are measured in order to analyze the origin of the giant electroresistance and two possible explanations are proposed.
基金supported by the National Natural Science Foundation of China(Grant No.61101055) the Research Fund for the Doctoral Program of HigherEducation,China(Grant No.20100032120029)
文摘Vanadium dioxide thin films have been fabricated through sputtering vanadium thin films and rapid thermal annealing in oxygen. The microstructure and the metal-insulator transition properties of the vanadium dioxide thin films were inves- tigated by X-ray diffraction, X-ray photoelectron spectroscopy, and a spectrometer. It is found that the preferred orientation of the vanadium dioxide changes from (111) to (011 ) with increasing thickness of the vanadium thin film after rapid thermal annealing. The vanadium dioxide thin films exhibit an obvious metal-insulator transition with increasing temperature, and the phase transition temperature decreases as the film thickness increases. The transition shows hysteretic behaviors, and the hysteresis width decreases as the film thickness increases due to the higher concentration carriers resulted from the uncompleted lattice. The fabrication of vanadium dioxide thin films with higher concentration carriers will facilitate the nature study of the metal-insulator transition.
文摘The magnetron sputtered La0.7Sr0.3MnO3 films were implanted with different doses (5 ′ 1015 ions×cm?2 and 5 ′ 1016 ions×cm-2) of Al ions at different negative pulsed voltages (30 kV and 50 kV) by plasma based ion implantation and then annealed at 973 K for 1 h in air. The microstructure, surface morphologies, surface roughness, metal-insulator transition and room temperature emittance properties of the post-implantation annealed films were investigated and compared with those of the La0.7Sr0.3MnO3 film annealed at 973 K for 1 h in air. The results indicate that the post- implantation annealed films show single perovskite phase and obvious (100) preferred orientation growth. The Mn-O bond length, surface roughness and metal-insulator transition temperature (TMI) of the films can be effectively adjusted by changing implantation voltage or implantation dose of Al ions. However, the change of implantation parameters just has a small effect on room temperature emittance of the films. Compared with the annealed film, the post-implantation annealed films have shorter Mn-O bond length and lower room temperature emittance. The TMI of the films implanted at low voltage is lower than that of the annealed film, which mainly results from the degradation of oxidization during annealing process and the part displacement of Mn3+-O2+- Mn4+ double exchange channels by Al3+-O2?-Mn4+. The post-implanted annealed film implanted at 50 kV/5 ′ 1016 ions×cm-2 has a higher TMI than the annealed film, which is 247 K. The increase of TMI of the film implanted with high dose of Al ions at high voltage can be attributed to the improvement of microstructure.
基金the National Natural Science Foundation of China(No.10374032 and 10574049)the Key Project of Education Bureau of Hubei Province(No.2002A04006)
文摘A comparative study for two different series, La0.67Ca0.33Mn1-xCrxO3 and La0.67+xCa0.33-x Mn1-xCrxO3 is performed with x changing from 0.04 to 0.08 through measurements of zero-field resistivity (p), magnetoresistance (MR) and ac susceptibility (Z) as functions of temperature (T). For the second group, a single insulator-metal transition was characterized by the resistivity maximum appears in p vs. T curve. For the first group, besides the resistivity peak appearing at higher temperatures, the sample shows evidence for the existence of another peak appearing at lower temperatures. Compared to the first group, the second group shows a significant enhancement in MR effect, while the measurement ofΧ-T dependence does not display obvious differences for the two series. Different behaviors observed in the two series are discussed by considering possible exchange interaction between Mn^3- ion and Cr^3- ion.
基金Project supported by the National Natural Science Foundation of China (Grant No. 60906037)the Fundamental Research Funds for the Central Universities,China (Grant No. ZYGX2009J027)the Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices
文摘In this paper, we present a monolithic integration of a self-protected AlGaN/GaN metal-insulator field-effect transistor (MISFET). An integrated field-controlled diode on the drain side of the AlGaN/GaN MISFET features a self- protected function for a reverse bias. This diode takes advantage of the recessed-barrier enhancement-mode technique to realize an ultra-low voltage drop and a low turn-ON voltage. In the smart monolithic integration, this integrated diode can block a reverse bias (〉 70 V/μm) and suppress the leakage current (〈 5 × 10-11 A/mm). Compared with conventional monolithic integration, the numerical results show that the MISET integrated with a field-controlled diode leads to a good performance for smart power integration. And the power loss is lower than 50% in conduction without forward current degeneration.
基金supported by the National Basic Research Program of China(Grant Nos.2015CB921102,2017YFA0303301,and 2017YFA0304600)National Natural Science Foundation of China(Grant Nos.11504008,11574245,11674028,and 11822407)
文摘Scaling theory predicts complete localization in d = 2 in quantum systems belonging to the orthogonal class(i.e., with timereversal symmetry and spin-rotation symmetry). The conductance g behaves as g^exp(-L/l) with system size L and localization length l in the strong disorder limit. However, classical systems can always have metallic states in which Ohm’s law shows a constant g in d=2. We study a two-dimensional quantum percolation model by controlling dephasing effects. The numerical investigation of g aims at simulating a quantum-to-classical percolation evolution. An unexpected metallic phase, where g increases with L, generates immense interest before the system becomes completely classical. Furthermore, the analysis of the scaling plot of g indicates a metal-insulator crossover.
文摘With substitution of La by Tb in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3, the room temperature magnetoresistance △R/R_0drops at first, then undergoes an increase near x≈0.1, and finally drops again. The value of room temperaturemagnetoresistance at a field H=12 kOe for (La_(0.9)Tb_(0.1))_(0.67)Sr_(0.33)MnO_3 is -3.56%. The enhancement of the roomtemperature magnetoresistance induced by an appropriate Tb substitution in (La_(1-x)Tb_x)_(0.67)Sr_(0.33)MnO_3 is correlatedwith the shifts of the Curie temperature and metal-insulator temperature to near room temperature. The drop ofthe room temperature magnetoresistance at large Tb doping-contents may be due to its lower T_C and T_(MI) far fromthe room temperature.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50862007)the Inner Mongolia Natural Science Foundation of China (Grant No. 2009MS0101)
文摘The effect of Dy substitution for La site in layered manganese oxides La1.3-xDyxSr1.7Mn2O7 on the magnetic and electrical properties has been investigated. With the La3+ substituting by Dy^3+, the long range three-dimensional ferromagnetism transition and the insulator-metal transition disappear. These effects are attributed to the lattice distortion due to the substitution of the smaller Dy^3+. Addtionally, the small Dy^3+ is inclined to occupy the R site which is in the rock-salt layer, then the distribution of La, Sr, Dy ions in Dy-doped sample should be more orderly than that in Lal.3Sr1.7Mn2O7, so there is only one insulator-metal transition in the ρ-T curve of the sample with x = 0.05 and x = 0.1.
基金Project partly supported by the National Natural Science Foundation of Chinathe Ministry of Science and Technology of China(Grant No 2006CB921302)+2 种基金the EC Project OFSPIN (Grant No NMP3-CT-2006-033370)the Austrian Science Fund (GrantNo FWF P18551-N16)the Eurasia Pacific Uninet
文摘The one-electron spectral function of a frustrated Hubbard chain is computed by making use of the cluster perturbation theory. The spectral weight we found turns out to be strongly dependent on the frustrating next-nearest-neighbor hopping t′. A frustration induced pseudogap arises when the system evolves from a gapful Mott insulator to a gapless conductor for an intermediate value of the frustration parameter |t′|. Furthermore, the opening of a pseudogap in the density of states already in the metallic side leads to a continuous opening of the true gap in the insulator. For the hole-doped case, the pseudogap is pinned at the Fermi energy, while the Mott gap is shifted in energy with increasing Hubbard interaction U. The separation of the pseudogap and Mort gap in the hole-doped system demonstrates the validity of the existence of a pseudogap.