Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Meth...Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-repeffusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinasel/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. Conclusion: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction.展开更多
Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signal...Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.展开更多
The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeos...The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size,and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor(FXR)and the G-protein-coupled bile acid receptor(TGR5).展开更多
Objective: To observe the effects of electroacupuncture (EA) of different intensities on lactate dehydrogernase (LDH), succinate dehydrogenase (SDH) and ATPase in brain tissue of rats with cerebral ischemia-rep...Objective: To observe the effects of electroacupuncture (EA) of different intensities on lactate dehydrogernase (LDH), succinate dehydrogenase (SDH) and ATPase in brain tissue of rats with cerebral ischemia-reperfusion injury (CI/R). Methods: Forty male SD rats were uniformly randomized into sham operation group (group A), CI/R group (group B), CI/R+5 mA EA (group C), CI/R+3 mA EA (group D) and CI/R+I mA EA (group E) groups with eight rats in each group. Transient general brain ischemia was induced by four-vessel occlusion and reperfusion. The rats in group C, group D and group E were punctured and stimulated at Baihui (GV20), Mingmen (GV4) and Zusanli (ST36) with the same intermittent and rarefaction-dense wave (30 to 50 Hz) and different electric current intensities: 5 mA, 3 mA and 1 mA for 20 min after CI/R. Then the activities of Na^+- ^+-ATPase, SDH and LDH in mitochondria of brain tissue were measured by spectrophotometry. The ischemic cerebral cortex tissue was taken for observing the ultrastructure changes of impaired nerve cells. Results: Compared with group A, the activities of LDH, SDH and Na^+-K^+-ATPase were Iowerer in the group B (P〈0.05 or P〈0.01). However, the activities of LDH, SDH and Na^+-K^+-ATPase were higher in the group D than those in the group B (P〈0.05 or P〈0.01). In group A, the anatomical structure of the cerebral cortex cells was basically normal; in group B, the neuronal cellular structures were severely damaged, the neuronal mitochondria got swelling, the mitochondrial cristae were broken, the medullated nerve fibers were not integrated. In group C, group D and group E, the ultrastructure of impaired neuron were improved. Group D was the best among three groups above. Conclusion: EA of 3 mA intensity could strengthen aerobic metabolism by elevating the activities of SDH and LDH, meanwhile maintaining the ionic equilibrium in the exterior and interior brain cell and relieving the cellular 展开更多
基金Supported by National Natural Science Foundation of China(No.81102557)Doctoral Program Foundation of Higher Education of China(No.20104323110001)+4 种基金Key Project of Hunan Province Education Department(No.08A050)Aid Project for Innovation Platform Open Fund of Hunan Province University(No.11K050 and No.14K068)Key Project of Administration of Traditional Chinese Medicine of Hunan Province(No.201301)General Project of Science and Technology Department of Hunan Province(No.2014SK3001)General Project of Education Bureau of Hunan Province(No.11C0963)
文摘Objective: To explore the effects and molecular mechanisms of the combination between total Astragalus extract (TAE) and total Panax notoginseng saponins (TPNS) against cerebral ischemia- reperfusion injury. Methods: C57BL/6 mice were randomly divided into sham-operated group, model group, TAE (110 mg/kg) group, TPNS (115 mg/kg) group, TAE-TPNS combination group and Edaravone (4 mg/kg) group, treated for 4 days, then, cerebral ischemia-repeffusion injury was established by bilateral common carotid artery (CCA) ligation for 20 min followed by reperfusion for 1 and 24 h. Results: TPNS could increase adenosine triphosphate (ATP) level, TAE and TAE-TPNS combination increased ATP, adenosine diphosphate (ADP) contents and Na+-K+-ATPase activity, and the effects of TAE-TPNS combination were stronger than those of TAE or TPNS alone after reperfusion for 1 h. After reperfusion for 24 h, TAE, TPNS and TAE-TPNS combination significantly increased neurocyte survival rate and decreased the apoptosis rate as well as down-regulated the expression of phosphorylated c-June N-terminal kinasel/2 (p-JNK1/2), cytochrome C (Cyt C), cysteine aspartic acid-specific protease (Caspase)-9 and Caspase-3. Furthermore, the effects in TAE-TPNS combination were better than those in TAE or TPNS alone. Conclusion: The combination of TAE 110 mg/kg and TPNS 115 mg/kg could strengthen protective effects on cerebral ischemia injury, the mechanism underlying might be related to improving jointly the early energy metabolism, and relieving the delayed apoptosis via inhibiting the mitochondrial apoptosis pathway of JNK signal transduction.
文摘Amino acids have various prominent functions in plants. Besides their usage during protein biosynthesis, they also represent building blocks for several other biosynthesis pathways and play pivotal roles during signaling processes as well as in plant stress response. In general, pool sizes of the 20 amino acids differ strongly and change dynamically depending on the developmental and physiological state of the plant cell. Besides amino acid biosynthesis, which has already been investigated in great detail, the catabolism of amino acids is of central importance for adjusting their pool sizes but so far has drawn much less attention. The degradation of amino acids can also contribute substantially to the energy state of plant cells under certain physiological conditions, e.g. carbon starvation. In this review, we discuss the biological role of amino acid catabolism and summarize current knowledge on amino acid degradation pathways and their regulation in the context of plant cell physiology.
基金supported by the National Institute of Diabetes and Digestive and Kidney Diseases of the National Institutes of Health (NIH,No.R01DK047987)supported by a Research Supplement to Promote Diversity in Health Related Research from the NIH
文摘The classical functions of bile acids include acting as detergents to facilitate the digestion and absorption of nutrients in the gut. In addition, bile acids also act as signaling molecules to regulate glucose homeostasis, lipid metabolism and energy expenditure. The signaling potential of bile acids in compartments such as the systemic circulation is regulated in part by an efficient enterohepatic circulation that functions to conserve and channel the pool of bile acids within the intestinal and hepatobiliary compartments. Changes in hepatobiliary and intestinal bile acid transport can alter the composition, size,and distribution of the bile acid pool. These alterations in turn can have significant effects on bile acid signaling and their downstream metabolic targets. This review discusses recent advances in our understanding of the inter-relationship between the enterohepatic cycling of bile acids and the metabolic consequences of signaling via bile acid-activated receptors, such as farnesoid X nuclear receptor(FXR)and the G-protein-coupled bile acid receptor(TGR5).
文摘Objective: To observe the effects of electroacupuncture (EA) of different intensities on lactate dehydrogernase (LDH), succinate dehydrogenase (SDH) and ATPase in brain tissue of rats with cerebral ischemia-reperfusion injury (CI/R). Methods: Forty male SD rats were uniformly randomized into sham operation group (group A), CI/R group (group B), CI/R+5 mA EA (group C), CI/R+3 mA EA (group D) and CI/R+I mA EA (group E) groups with eight rats in each group. Transient general brain ischemia was induced by four-vessel occlusion and reperfusion. The rats in group C, group D and group E were punctured and stimulated at Baihui (GV20), Mingmen (GV4) and Zusanli (ST36) with the same intermittent and rarefaction-dense wave (30 to 50 Hz) and different electric current intensities: 5 mA, 3 mA and 1 mA for 20 min after CI/R. Then the activities of Na^+- ^+-ATPase, SDH and LDH in mitochondria of brain tissue were measured by spectrophotometry. The ischemic cerebral cortex tissue was taken for observing the ultrastructure changes of impaired nerve cells. Results: Compared with group A, the activities of LDH, SDH and Na^+-K^+-ATPase were Iowerer in the group B (P〈0.05 or P〈0.01). However, the activities of LDH, SDH and Na^+-K^+-ATPase were higher in the group D than those in the group B (P〈0.05 or P〈0.01). In group A, the anatomical structure of the cerebral cortex cells was basically normal; in group B, the neuronal cellular structures were severely damaged, the neuronal mitochondria got swelling, the mitochondrial cristae were broken, the medullated nerve fibers were not integrated. In group C, group D and group E, the ultrastructure of impaired neuron were improved. Group D was the best among three groups above. Conclusion: EA of 3 mA intensity could strengthen aerobic metabolism by elevating the activities of SDH and LDH, meanwhile maintaining the ionic equilibrium in the exterior and interior brain cell and relieving the cellular