为解决软件定义无人机自组网路由维护存在的控制开销和数据包延迟偏大的问题,基于现有的OpenFlow协议提出了一种高效自适应的软件定义无人机自组网路由维护机制(Efficient and Adaptive Software-defined Unmanned Aerial Vehicle Ad Ho...为解决软件定义无人机自组网路由维护存在的控制开销和数据包延迟偏大的问题,基于现有的OpenFlow协议提出了一种高效自适应的软件定义无人机自组网路由维护机制(Efficient and Adaptive Software-defined Unmanned Aerial Vehicle Ad Hoc Network Routing Maintenance Mechanism Based on OpenFlow Protocol,OpenFlow-EARM)。新机制采用基于距离估计的自适应转发策略,根据无人机节点的历史流表项信息估算并选择时延最低的方式转发流表项缺失数据包,降低数据包传输时延;同时在路由维护过程中采用了基于周期恢复的消息聚合策略,减少控制包的发包次数,从而降低网络控制开销。仿真结果表明,新机制的平均端到端时延、网络控制开销和丢包率等方面性能优于现有的最优化链路状态路由(Optimal Link State Routing,OLSR)协议和OpenFlow协议。展开更多
Wireless Sensor Networks (WSNs) typically use in-network processing to reduce the communication overhead. Due to the fusion of data items sourced at different nodes into a single one during in-network processing, the ...Wireless Sensor Networks (WSNs) typically use in-network processing to reduce the communication overhead. Due to the fusion of data items sourced at different nodes into a single one during in-network processing, the sanctity of the aggregated data needs to be ensured. Especially, the data integrity of the aggregated result is critical as any malicious update to it can jeopardize not one, but many sensor readings. In this paper, we analyse three different approaches to providing integrity support for SDA in WSNs. The first one is traditional MAC, in which each leaf node and intermediate node share a key with parent (symmetric key). The second is aggregate MAC (AMAC), in which a base station shares a unique key with all the other sensor nodes. The third is homomorphic MAC (Homo MAC) that is purely symmetric key-based approach. These approaches exhibit diverse trade-off in resource consumption and security assumptions. Adding together to that, we also propose a probabilistic and improved variant of homomorphic MAC that improves the security strength for secure data aggregation in WSNs. We carry out simulations in TinyOS environment to experimentally evaluate the impact of each of these on the resource consumption in WSNs.展开更多
文摘为解决软件定义无人机自组网路由维护存在的控制开销和数据包延迟偏大的问题,基于现有的OpenFlow协议提出了一种高效自适应的软件定义无人机自组网路由维护机制(Efficient and Adaptive Software-defined Unmanned Aerial Vehicle Ad Hoc Network Routing Maintenance Mechanism Based on OpenFlow Protocol,OpenFlow-EARM)。新机制采用基于距离估计的自适应转发策略,根据无人机节点的历史流表项信息估算并选择时延最低的方式转发流表项缺失数据包,降低数据包传输时延;同时在路由维护过程中采用了基于周期恢复的消息聚合策略,减少控制包的发包次数,从而降低网络控制开销。仿真结果表明,新机制的平均端到端时延、网络控制开销和丢包率等方面性能优于现有的最优化链路状态路由(Optimal Link State Routing,OLSR)协议和OpenFlow协议。
文摘Wireless Sensor Networks (WSNs) typically use in-network processing to reduce the communication overhead. Due to the fusion of data items sourced at different nodes into a single one during in-network processing, the sanctity of the aggregated data needs to be ensured. Especially, the data integrity of the aggregated result is critical as any malicious update to it can jeopardize not one, but many sensor readings. In this paper, we analyse three different approaches to providing integrity support for SDA in WSNs. The first one is traditional MAC, in which each leaf node and intermediate node share a key with parent (symmetric key). The second is aggregate MAC (AMAC), in which a base station shares a unique key with all the other sensor nodes. The third is homomorphic MAC (Homo MAC) that is purely symmetric key-based approach. These approaches exhibit diverse trade-off in resource consumption and security assumptions. Adding together to that, we also propose a probabilistic and improved variant of homomorphic MAC that improves the security strength for secure data aggregation in WSNs. We carry out simulations in TinyOS environment to experimentally evaluate the impact of each of these on the resource consumption in WSNs.