This paper reviews the main theoretical progress of mesoscale weather dynamics since 2003, including: (1) The dynamic mechanisms of balanced and unbalanced flow are applied to study the genesis and development prob...This paper reviews the main theoretical progress of mesoscale weather dynamics since 2003, including: (1) The dynamic mechanisms of balanced and unbalanced flow are applied to study the genesis and development problems of mesoscale circulation. The symmetric instability and transverse-wave instability are analyzed in line and vortex atmosphere convection, and further research has been done on nonlinear convective symmetric instability. The interaction between forced convection and unstable convection and the wave characteristics of mesoscale motion are also discussed. (2) Intermediate atmosphere dynamic boundary layer models are developed. The complicated nonlinear interaction is analyzed theoretically between the atmospheric boundary layer and the free atmosphere. The structure of the topography boundary layer, atmospheric frontogenesis, the structure and circulation of the low-level front and other boundary layer dynamic problems are discussed. (3) The formation and development of meso-β-scale rainstorms under the background of the East-Asia atmosphere circulation are diagnosed with the variation of MPV (moist potential vorticity) anomalies. And some physical vectors are modified and applied in the moist atmosphere.展开更多
This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy ...This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.展开更多
Mesoscale convective systems(MCSs) around the second-step terrain(106°–113°E, 28°–35°N), along the middle reaches of the Yangtze River, were detected, tracked and classified using a black body te...Mesoscale convective systems(MCSs) around the second-step terrain(106°–113°E, 28°–35°N), along the middle reaches of the Yangtze River, were detected, tracked and classified using a black body temperature(TBB) dataset during May to August 2000–2016(except 2005). The MCSs were divided into eastward-propagating(EP) and quasi-stationary(QS) types, to compare their spatial and temporal distributions and convective intensities, and to identify the favorable synoptic conditions for the formation and evolution of EP MCSs. The results showed that both MCS types occurred most often in July. The EP MCSs were mainly initiated over the eastern regions of the study area, while the QS type mainly originated in the western regions of the study area. Both MCS types mainly formed in the afternoon, but a second peak occurred in the early morning for QS MCSs. The EP MCSs had a larger cloud area at their mature stage and a lower cloud brightness temperature, indicating more intense convection. Additionally, the longer lifetime and further eastward propagation of the EP MCSs meant that they had a great influence on the precipitation over the middle and lower reaches of the Yangtze River. Synoptic circulation analysis demonstrated that the combination of the mid-level low trough east of the Tibetan Plateau(TP), and the western pacific subtropical high(WPSH), favored the formation and eastward propagation of EP MCSs. The positive vertical relative vorticity and stronger vertical wind shear provided dynamic conditions favorable for convective organization and development. Furthermore, a stronger low level jet imported warm and moist air to the eastern edge of, and the regions east of, the second-step terrain. The substantial convergence of water vapor promoted the development and long-lived maintenance of the EP MCSs.展开更多
Using land-use types derived from satellite remote sensing data collected by the EOS Moderate Resolution Imaging Spectroradiometer (EOS/MODIS), the mesoscale and turbulent fluxes generated by inhomogeneities of the ...Using land-use types derived from satellite remote sensing data collected by the EOS Moderate Resolution Imaging Spectroradiometer (EOS/MODIS), the mesoscale and turbulent fluxes generated by inhomogeneities of the underlying surface over the Jinta Oasis, northwestern China, were simulated using the Regional Atmospheric Modeling System (RAMS4.4). The results indicate that mesoscale circulation generated by land-surface inhomogeneities over the Jinta Oasis is more important than turbulence. Vertical heat fluxes and water vapor are transported to higher levels by mesoscale circulation. Mesoscale circulation also produces mesoscale synoptic systems and prevents water vapor over the oasis from running off. Mesoscale circulation transports moisture to higher atmospheric levels as the land-surface moisture over the oasis increases, favoring the formation of clouds, which sometimes leads to rainfall. Large-scale wind speed has a significant impact on mesoscale heat fluxes. During the active phase of mesoscale circulation, the stronger large-scale winds are associated with small mesoscale fluxes; however, background wind seems to intensify the turbulent sensible heat flux and turbulent latent heat flux. If the area of oasis is enlarged properly, mesoscale circulation will be able to transport moisture to higher levels, favoring the formation of rainfall in the oasis and protecting its "cold island" effect. The impact of irrigation on rainfall is important, and increasing irrigation across the oasis is necessary to protect the oasis.展开更多
Using a one-level numerical diagnostic model, the features of surface wind fields in Hainan Island and Leizhou Peninsula and maritime area around it are studied. In the experiments with prevailing synoptic situation f...Using a one-level numerical diagnostic model, the features of surface wind fields in Hainan Island and Leizhou Peninsula and maritime area around it are studied. In the experiments with prevailing synoptic situation for varying seasons there are obvious deflection flows, terrain slope drafts, convergence lines, sea/land breeze and mountain/valley breeze, and difference in season accounts for the features found in the mesoscale distribution.The complex terrain and seatland distribution in the area is shown to be the important cause for the formation of varying mesoscale circulation, and close relationships between local climatic distribution feature and mesoscale circulation are then revealed.展开更多
Using surface and NCEP reanalysis data along with radar and satellite images, diagnosis has been carried out to probe the reasons for the very heavy rainfall that occurred in Islāmābad-Rāwal...Using surface and NCEP reanalysis data along with radar and satellite images, diagnosis has been carried out to probe the reasons for the very heavy rainfall that occurred in Islāmābad-Rāwalpindi on 23 July 2001. It has been revealed that the sudden evolution of this meso-scale severe weather system was the direct result of strong surface convection in moist and unstable lower layers of the atmosphere. The subsequent rapid development was the combined effect of the presence of the mid latitude westerly’s trough in the north and moisture feeding through monsoon flow along the Himalayas and also the direct south-westerly current from the Arabian Sea. After the westward shifting of the Sub-Tropical High (STH) from the north of India, the strong divergence zone on its eastern edge contributed positively to the development of upward motion. Initially the convective systems moved towards the south and then southeastward following the steering current in the middle troposphere. Based on these analyses, the physical model of the sudden record heavy rainfall has been proposed and a comparison between the heavy rainfall in this case and one in China has been conducted.展开更多
This study investigated the formation and development of a mesoscale convergence line (MCL) within the circulation of Typhoon Rananim (0414), which eventually led to torrential rainfall over inland China. The stud...This study investigated the formation and development of a mesoscale convergence line (MCL) within the circulation of Typhoon Rananim (0414), which eventually led to torrential rainfall over inland China. The study is based on satellite, surface and sounding data, and 20 km×20 km regional spectral model data released by the Japan Meteorological Agency. It is found that midlatitude cold air intruded into the typhoon circulation, which resulted in the formation of the MCL in the northwestern quadrant of the typhoon. The MCL occurred in the lower troposphere below 700 hPa, with an ascending airflow inclined to cold air, and a secondary vertical circulation across the MCL. Meso-/~ scale convective cloud clusters emerged and developed near the MCL before their merging into the typhoon remnant clouds. Convective instability and conditional symmetric instability appeared simultaneously near Diagnosis of the interaction between the MCL and kinetic energy and positive vorticity for its further the MCL, favorable for the development of convection. the typhoon remnant implies that the MCL obtained development from the typhoon remnant in the lower troposphere. In turn, the development of the MCL provided kinetic energy and positive vorticity at upper levels for the typhoon remnant, which may have slowed clown the decaying of the typhoon.展开更多
With the development of satellite altimetry technology,the resolution of sea-level anomaly(SLA)datasets is constantly improving.Current spatial resolution levels can reach a grid size of(1/4)°×(1/4)°,wi...With the development of satellite altimetry technology,the resolution of sea-level anomaly(SLA)datasets is constantly improving.Current spatial resolution levels can reach a grid size of(1/4)°×(1/4)°,with daily measurements that span from 1993 to 2018,allowing for the precise identification and tracking of individual eddies.In the current study,in addition to the internal circulation and migration of eddies,a new aspect in eddy kinematics is revealed and investigated for the first time:shape-based overall eddy rotation(SOER),based on the intrinsic elliptical shape of eddies identified from a high-resolution SLA dataset.We found that eddies can maintain an elliptical shape and a slow and stable SOER during their migration process.The SOER speed was observed to be negatively correlated to eddy lifetime,and exhibited a dependence on latitude,decreasing from low-and high-to mid-latitudes.The SOER direction tended to be consistent with the direction of internal circulation,particularly for long-lived eddies.In addition,we identified a negative relationship between internal circulation speed and SOER speed while the migration speed was positively related to SOER speed.These findings further expand and improve eddy kinematics,which is of great significance for the future study of eddy dynamics.展开更多
基金This work was supported by the National Nature Science Foundation of China (Grant Nos. 40575022, 40575025, 40333025, 40325014, and 40333031)the National Key Basic Research and Development Project of China (Grant No. 2004CB418301).
文摘This paper reviews the main theoretical progress of mesoscale weather dynamics since 2003, including: (1) The dynamic mechanisms of balanced and unbalanced flow are applied to study the genesis and development problems of mesoscale circulation. The symmetric instability and transverse-wave instability are analyzed in line and vortex atmosphere convection, and further research has been done on nonlinear convective symmetric instability. The interaction between forced convection and unstable convection and the wave characteristics of mesoscale motion are also discussed. (2) Intermediate atmosphere dynamic boundary layer models are developed. The complicated nonlinear interaction is analyzed theoretically between the atmospheric boundary layer and the free atmosphere. The structure of the topography boundary layer, atmospheric frontogenesis, the structure and circulation of the low-level front and other boundary layer dynamic problems are discussed. (3) The formation and development of meso-β-scale rainstorms under the background of the East-Asia atmosphere circulation are diagnosed with the variation of MPV (moist potential vorticity) anomalies. And some physical vectors are modified and applied in the moist atmosphere.
基金supported by the National Key R&D Program for Developing Basic Sciences(2022YFC3104802)the National Natural Science Foundation of China(Nos.42306219 and 42106020)+3 种基金the Tai Shan Scholar Pro-gram(Grant No.tstp20231237)Part of computing resources are financially supported by Laoshan Laboratory(No.LSKJ202300301)Dr.Eric P.CHASSIGNET is supported by the CAS President’s International Fellowship Initiative(PIFI)NOAA Climate Program Office MAPP Program(Award NA15OAR4310088).
文摘This study assesses the capability of a coarse-resolution ocean model to replicate the response of the Southern Ocean Meridional Overturning Circulation(MOC) to intensified westerlies,focusing on the role of the eddy transfer coefficient(κ).κ is a parameter commonly used to represent the velocities induced by unresolved eddies.Our findings reveal that a stratification-dependent κ,incorporating spatiotemporal variability,leads to the most robust eddy-induced MOC response,capturing 82% of the reference eddy-resolving simulation.Decomposing the eddy-induced velocity into its vertical variation(VV) and spatial structure(SS) components unveils that the enhanced eddy compensation response primarily stems from an augmented SS term,while the introduced VV term weakens the response.Furthermore,the temporal variability of the stratification-dependent κ emerges as a key factor in enhancing the eddy compensation response to intensified westerlies.The experiment with stratification-dependent κ exhibits a more potent eddy compensation response compared to the constant κ,attributed to the structure of κ and the vertical variation of the density slope.These results underscore the critical role of accurately representing κ in capturing the response of the Southern Ocean MOC and emphasize the significance of the isopycnal slope in modulating the eddy compensation mechanism.
基金supported by the National Key R & D Program of China (Grants No. 2018YFC1507200)the National Natural Science Foundation of China (Grants Nos. 41505038, 91637211, 41775046 & 41575045)。
文摘Mesoscale convective systems(MCSs) around the second-step terrain(106°–113°E, 28°–35°N), along the middle reaches of the Yangtze River, were detected, tracked and classified using a black body temperature(TBB) dataset during May to August 2000–2016(except 2005). The MCSs were divided into eastward-propagating(EP) and quasi-stationary(QS) types, to compare their spatial and temporal distributions and convective intensities, and to identify the favorable synoptic conditions for the formation and evolution of EP MCSs. The results showed that both MCS types occurred most often in July. The EP MCSs were mainly initiated over the eastern regions of the study area, while the QS type mainly originated in the western regions of the study area. Both MCS types mainly formed in the afternoon, but a second peak occurred in the early morning for QS MCSs. The EP MCSs had a larger cloud area at their mature stage and a lower cloud brightness temperature, indicating more intense convection. Additionally, the longer lifetime and further eastward propagation of the EP MCSs meant that they had a great influence on the precipitation over the middle and lower reaches of the Yangtze River. Synoptic circulation analysis demonstrated that the combination of the mid-level low trough east of the Tibetan Plateau(TP), and the western pacific subtropical high(WPSH), favored the formation and eastward propagation of EP MCSs. The positive vertical relative vorticity and stronger vertical wind shear provided dynamic conditions favorable for convective organization and development. Furthermore, a stronger low level jet imported warm and moist air to the eastern edge of, and the regions east of, the second-step terrain. The substantial convergence of water vapor promoted the development and long-lived maintenance of the EP MCSs.
基金supported by the National Basic Research Program (also called 973 Program) (Grant No. 2009CB421402)Chinese National Science Foundation Program (Grant No. 40975007),Chinese National Science Foundation Program (Grant No. 40633014)+1 种基金China Postdoctoral Science Foundation (Grant No. 119100581F)Important Program of State Key Laboratory of Severe Weather Chinese Academy of Meteorological Sciences (Grant No. 2010LASW-A02)
文摘Using land-use types derived from satellite remote sensing data collected by the EOS Moderate Resolution Imaging Spectroradiometer (EOS/MODIS), the mesoscale and turbulent fluxes generated by inhomogeneities of the underlying surface over the Jinta Oasis, northwestern China, were simulated using the Regional Atmospheric Modeling System (RAMS4.4). The results indicate that mesoscale circulation generated by land-surface inhomogeneities over the Jinta Oasis is more important than turbulence. Vertical heat fluxes and water vapor are transported to higher levels by mesoscale circulation. Mesoscale circulation also produces mesoscale synoptic systems and prevents water vapor over the oasis from running off. Mesoscale circulation transports moisture to higher atmospheric levels as the land-surface moisture over the oasis increases, favoring the formation of clouds, which sometimes leads to rainfall. Large-scale wind speed has a significant impact on mesoscale heat fluxes. During the active phase of mesoscale circulation, the stronger large-scale winds are associated with small mesoscale fluxes; however, background wind seems to intensify the turbulent sensible heat flux and turbulent latent heat flux. If the area of oasis is enlarged properly, mesoscale circulation will be able to transport moisture to higher levels, favoring the formation of rainfall in the oasis and protecting its "cold island" effect. The impact of irrigation on rainfall is important, and increasing irrigation across the oasis is necessary to protect the oasis.
文摘Using a one-level numerical diagnostic model, the features of surface wind fields in Hainan Island and Leizhou Peninsula and maritime area around it are studied. In the experiments with prevailing synoptic situation for varying seasons there are obvious deflection flows, terrain slope drafts, convergence lines, sea/land breeze and mountain/valley breeze, and difference in season accounts for the features found in the mesoscale distribution.The complex terrain and seatland distribution in the area is shown to be the important cause for the formation of varying mesoscale circulation, and close relationships between local climatic distribution feature and mesoscale circulation are then revealed.
文摘Using surface and NCEP reanalysis data along with radar and satellite images, diagnosis has been carried out to probe the reasons for the very heavy rainfall that occurred in Islāmābad-Rāwalpindi on 23 July 2001. It has been revealed that the sudden evolution of this meso-scale severe weather system was the direct result of strong surface convection in moist and unstable lower layers of the atmosphere. The subsequent rapid development was the combined effect of the presence of the mid latitude westerly’s trough in the north and moisture feeding through monsoon flow along the Himalayas and also the direct south-westerly current from the Arabian Sea. After the westward shifting of the Sub-Tropical High (STH) from the north of India, the strong divergence zone on its eastern edge contributed positively to the development of upward motion. Initially the convective systems moved towards the south and then southeastward following the steering current in the middle troposphere. Based on these analyses, the physical model of the sudden record heavy rainfall has been proposed and a comparison between the heavy rainfall in this case and one in China has been conducted.
基金the National"973"Program of China under Grant No.2009CB421504the National Natural Science Foundation of China under Grant Nos.40730948,40675033,and 40975032the Key Project of the Chinese Academy of Meteorological Sciences under Grant No.2008LASWZI01.
文摘This study investigated the formation and development of a mesoscale convergence line (MCL) within the circulation of Typhoon Rananim (0414), which eventually led to torrential rainfall over inland China. The study is based on satellite, surface and sounding data, and 20 km×20 km regional spectral model data released by the Japan Meteorological Agency. It is found that midlatitude cold air intruded into the typhoon circulation, which resulted in the formation of the MCL in the northwestern quadrant of the typhoon. The MCL occurred in the lower troposphere below 700 hPa, with an ascending airflow inclined to cold air, and a secondary vertical circulation across the MCL. Meso-/~ scale convective cloud clusters emerged and developed near the MCL before their merging into the typhoon remnant clouds. Convective instability and conditional symmetric instability appeared simultaneously near Diagnosis of the interaction between the MCL and kinetic energy and positive vorticity for its further the MCL, favorable for the development of convection. the typhoon remnant implies that the MCL obtained development from the typhoon remnant in the lower troposphere. In turn, the development of the MCL provided kinetic energy and positive vorticity at upper levels for the typhoon remnant, which may have slowed clown the decaying of the typhoon.
基金The National Natural Science Foundation of China under contract No.42030406the Wenhai Program of the S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2021WHZZB1501the Marine S&T Fund of Shandong Province for the Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2022QNLM050301-1。
文摘With the development of satellite altimetry technology,the resolution of sea-level anomaly(SLA)datasets is constantly improving.Current spatial resolution levels can reach a grid size of(1/4)°×(1/4)°,with daily measurements that span from 1993 to 2018,allowing for the precise identification and tracking of individual eddies.In the current study,in addition to the internal circulation and migration of eddies,a new aspect in eddy kinematics is revealed and investigated for the first time:shape-based overall eddy rotation(SOER),based on the intrinsic elliptical shape of eddies identified from a high-resolution SLA dataset.We found that eddies can maintain an elliptical shape and a slow and stable SOER during their migration process.The SOER speed was observed to be negatively correlated to eddy lifetime,and exhibited a dependence on latitude,decreasing from low-and high-to mid-latitudes.The SOER direction tended to be consistent with the direction of internal circulation,particularly for long-lived eddies.In addition,we identified a negative relationship between internal circulation speed and SOER speed while the migration speed was positively related to SOER speed.These findings further expand and improve eddy kinematics,which is of great significance for the future study of eddy dynamics.