期刊文献+
共找到251篇文章
< 1 2 13 >
每页显示 20 50 100
记忆电机的研究综述及最新进展 被引量:29
1
作者 林鹤云 阳辉 +1 位作者 黄允凯 房淑华 《中国电机工程学报》 EI CSCD 北大核心 2013年第33期57-67,8,共11页
记忆电机利用铝镍钴(aluminum-nickel-cobalt,AlNiCo)永磁材料的高剩磁、低矫顽力特性,通过施加瞬时的充去磁电流脉冲来改变永磁体磁化状态,以实现高效的在线调磁,被认为是一种真正意义上的可变磁通永磁电机,非常适于电动汽车、高速机... 记忆电机利用铝镍钴(aluminum-nickel-cobalt,AlNiCo)永磁材料的高剩磁、低矫顽力特性,通过施加瞬时的充去磁电流脉冲来改变永磁体磁化状态,以实现高效的在线调磁,被认为是一种真正意义上的可变磁通永磁电机,非常适于电动汽车、高速机床和飞轮储能等领域的应用。根据施加脉冲调磁电流的方式,记忆电机可以分为交流脉冲调磁型和直流脉冲调磁型两大类。该文分析并总结了现有记忆电机的结构特点、工作原理和各自的优缺点,阐述了记忆电机的关键共性问题,并针对现有记忆电机存在的不足,提出了一类磁通切换型记忆电机。该类电机具有感应电动势波形正弦、气隙磁通易于调节、定位力矩和转矩脉动小和容错能力强等优点,通过在线调磁与驱动的协调控制,可以使之适用于高精度宽调速伺服应用。该文对记忆电机的理论研究与工程应用具有一定的参考价值。 展开更多
关键词 记忆电机 永磁电机 可变磁通 磁滞模型 磁通切换
下载PDF
秒级响应电网在线分析软件平台 被引量:19
2
作者 周二专 冯东豪 +1 位作者 严剑峰 周孝信 《电网技术》 EI CSCD 北大核心 2020年第9期3474-3480,共7页
介绍一个新的电网实时在线分析系统软件平台,以支持下一代秒级响应在线分析系统的研发。文章介绍了在线分析系统响应速度提升的总体思路,在线分析软件平台技术路线、实施方案和平台的通用功能模块。基于该在线分析软件平台的拓展,研发... 介绍一个新的电网实时在线分析系统软件平台,以支持下一代秒级响应在线分析系统的研发。文章介绍了在线分析系统响应速度提升的总体思路,在线分析软件平台技术路线、实施方案和平台的通用功能模块。基于该在线分析软件平台的拓展,研发了一套新在线分析系统。该系统已经在湖南省调部署并在线示范运行。初步测试数据表明,新在线分析系统可以达到秒级的响应速度。 展开更多
关键词 电网在线分析 DSA 数字孪生 内存计算 并行计算 复杂事件处理 机器学习 神经网络模型
下载PDF
电动汽车用定子永磁型磁通记忆式游标电机性能分析 被引量:12
3
作者 葛叶明 朱孝勇 陈龙 《电机与控制应用》 北大核心 2014年第4期45-51,共7页
将磁通记忆的概念和游标结构运用到定子永磁型电机中,提出了一种应用于电动汽车的新型定子永磁型磁通记忆式游标电机。该电机采用了具有高剩磁、低矫顽力的铝镍钴永磁体和磁化绕组,使得在几乎不产生额外损耗的情况下就可以方便地实现在... 将磁通记忆的概念和游标结构运用到定子永磁型电机中,提出了一种应用于电动汽车的新型定子永磁型磁通记忆式游标电机。该电机采用了具有高剩磁、低矫顽力的铝镍钴永磁体和磁化绕组,使得在几乎不产生额外损耗的情况下就可以方便地实现在线调磁,从而可实现弱磁升速,有效拓宽了调速范围。在定子外层上增加了调制齿形成单气隙游标电机结构,通过调制齿实现"磁齿轮效应",从而实现电机的变速运行。基于分段线性磁滞模型与有限元时步法相结合分析了电机的静态及动态特性。仿真结果表明:该电机不仅调速范围宽而且具备低速大转矩等性能,能满足电动汽车起动、爬坡加速、高速巡航等运行工况的要求,在电动汽车领域具有一定的研究意义和应用前景。 展开更多
关键词 磁通记忆 游标电机 定子永磁型电机 电动汽车
下载PDF
Synthetic well logs generation via Recurrent Neural Networks 被引量:8
4
作者 ZHANG Dongxiao CHEN Yuntian MENG Jin 《Petroleum Exploration and Development》 2018年第4期629-639,共11页
To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and app... To supplement missing logging information without increasing economic cost, a machine learning method to generate synthetic well logs from the existing log data was presented, and the experimental verification and application effect analysis were carried out. Since the traditional Fully Connected Neural Network(FCNN) is incapable of preserving spatial dependency, the Long Short-Term Memory(LSTM) network, which is a kind of Recurrent Neural Network(RNN), was utilized to establish a method for log reconstruction. By this method, synthetic logs can be generated from series of input log data with consideration of variation trend and context information with depth. Besides, a cascaded LSTM was proposed by combining the standard LSTM with a cascade system. Testing through real well log data shows that: the results from the LSTM are of higher accuracy than the traditional FCNN; the cascaded LSTM is more suitable for the problem with multiple series data; the machine learning method proposed provides an accurate and cost effective way for synthetic well log generation. 展开更多
关键词 well LOG generating method machine learning Fully Connected NEURAL NETWORK RECURRENT NEURAL NETWORK Long SHORT-TERM memory artificial INTELLIGENCE
下载PDF
新型双层串联混合永磁记忆电机设计优化与特性分析 被引量:8
5
作者 阳辉 王逸贤 +2 位作者 郑昊 吕舒康 林鹤云 《中国电机工程学报》 EI CSCD 北大核心 2022年第24期9042-9052,共11页
为了解决传统串联磁路型混合永磁记忆电机存在的调磁范围受限、调磁电流幅值较高等问题,提出一种新型双层串联永磁记忆电机(dual-layer PM variable flux memory machine,DLPM-VFMM),并针对其设计优化与电磁特性进行研究。首先,基于VFM... 为了解决传统串联磁路型混合永磁记忆电机存在的调磁范围受限、调磁电流幅值较高等问题,提出一种新型双层串联永磁记忆电机(dual-layer PM variable flux memory machine,DLPM-VFMM),并针对其设计优化与电磁特性进行研究。首先,基于VFMM特性提出一套多目标设计优化流程,以确定电机初始尺寸;进一步利用有限元对整个电机模型进行参数化建模,并针对VFMM调磁能力及负载稳磁等特殊性能需求,实现参数的相关性分析以及多目标优化设计。在筛选出综合性能较好的模型参数后,分析对比单双层串联混合永磁VFMM的电磁性能。最后,制作DLPM-VFMM样机,并完成实验验证。 展开更多
关键词 双层永磁 串联磁路 记忆电机 电磁设计 多目标优化
下载PDF
串联永磁轴向磁场磁通切换记忆电机设计与调磁特性分析 被引量:7
6
作者 李念 林明耀 +2 位作者 杨公德 孔永 徐妲 《中国电机工程学报》 EI CSCD 北大核心 2017年第21期6190-6197,共8页
提出一种新型串联永磁轴向磁场磁通切换记忆电机,对其进行设计,研究了其调磁特性。通过在高矫顽力永磁基础上串联磁化水平易于调节的低矫顽力永磁,不仅可维持较高的气隙磁场,也可改变磁场的大小。基于三维有限元分析,研究了混合永磁比... 提出一种新型串联永磁轴向磁场磁通切换记忆电机,对其进行设计,研究了其调磁特性。通过在高矫顽力永磁基础上串联磁化水平易于调节的低矫顽力永磁,不仅可维持较高的气隙磁场,也可改变磁场的大小。基于三维有限元分析,研究了混合永磁比例对电机性能的影响,对比了不同磁化水平下永磁体磁场分布及电机的电磁特性。制造样机,进行试验研究,测试结果验证了仿真计算的正确性。通过脉冲电流改变永磁磁化水平,可连续平滑调节和控制该电机磁场,调磁损耗小,有效解决了磁通切换电机气隙磁场难以调节的问题,适用于电动车辆等需要宽调速高效率驱动的应用场合。 展开更多
关键词 轴向磁场 永磁电机 串联永磁 记忆电机 磁通切换
下载PDF
A self-adaptive,data-driven method to predict the cycling life of lithium-ion batteries 被引量:3
7
作者 Chao Han Yu-Chen Gao +5 位作者 Xiang Chen Xinyan Liu Nan Yao Legeng Yu Long Kong Qiang Zhang 《InfoMat》 SCIE CSCD 2024年第4期47-55,共9页
Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a se... Accurately forecasting the nonlinear degradation of lithium-ion batteries(LIBs)using early-cycle data can obviously shorten the battery test time,which accelerates battery optimization and production.In this work,a self-adaptive long short-term memory(SA-LSTM)method has been proposed to predict the battery degradation trajectory and battery lifespan with only early cycling data.Specifically,two features were extracted from discharge voltage curves by a time-series-based approach and forecasted to further cycles using SA-LSTM model.The as-obtained features were correlated with the capacity to predict the capacity degradation trajectory by generalized multiple linear regression model.The proposed method achieved an average online prediction error of 6.00%and 6.74%for discharge capacity and end of life,respectively,when using the early-cycle discharge information until 90%capacity retention.Fur-thermore,the importance of temperature control was highlighted by correlat-ing the features with the average temperature in each cycle.This work develops a self-adaptive data-driven method to accurately predict the cycling life of LIBs,and unveils the underlying degradation mechanism and the impor-tance of controlling environmental temperature. 展开更多
关键词 cycling lifespan prediction lithium-ion batteries long short-term memory method machine learning time series forecasting
原文传递
Recent Advances in Variable Flux Memory Machines for Traction Applications: A Review 被引量:7
8
作者 Hui Yang Heyun Lin Z.Q.Zhu 《CES Transactions on Electrical Machines and Systems》 2018年第1期34-50,共17页
This paper overviews the recent advances in variable flux memory machines(VFMMs)for traction applications with particular reference to newly emerged machine topologies and related control strategies.Due to the use of ... This paper overviews the recent advances in variable flux memory machines(VFMMs)for traction applications with particular reference to newly emerged machine topologies and related control strategies.Due to the use of flux memorable low coercive force(LCF)magnets,the air-gap flux of VFMM can be flexibly varied via a magnetizing current pulse.Thus,the copper loss associated with the flux weakening current and high-speed iron loss can be significantly reduced,and hence high efficiency can be achieved over a wide speed and torque/power operation.These merits make VFMM potentially attractive for electric vehicle(EV)applications.Various novel VFMMs are reviewed with particular reference to their topologies,working principle,characteristics and related control techniques.In order to tackle the drawbacks in the existing VFMMs,some new designs are introduced for performance improvement.Then,the electromagnetic characteristics of an exemplified EV-scaled switched flux memory machine and various benchmark traction machine choices,such as induction machine,synchronous reluctance machines,as well as commercially available Prius 2010 interior permanent magnet(IPM)machine are compared.Finally,the key challenges and development trends of VFMM are highlighted,respectively. 展开更多
关键词 AC-magnetized DC-magnetized electrical machines electric vehicles hybrid permanent magnet(PM) memory machine variable flux
下载PDF
LSTM-based Energy Management for Electric Vehicle Charging in Commercial-building Prosumers 被引量:7
9
作者 Huayanran Zhou Yihong Zhou +4 位作者 Junjie Hu Guangya Yang Dongliang Xie Yusheng Xue Lars Nordström 《Journal of Modern Power Systems and Clean Energy》 SCIE EI CSCD 2021年第5期1205-1216,共12页
As typical prosumers,commercial buildings equipped with electric vehicle(EV)charging piles and solar photovoltaic panels require an effective energy management method.However,the conventional optimization-model-based ... As typical prosumers,commercial buildings equipped with electric vehicle(EV)charging piles and solar photovoltaic panels require an effective energy management method.However,the conventional optimization-model-based building energy management system faces significant challenges regarding prediction and calculation in online execution.To address this issue,a long short-term memory(LSTM)recurrent neural network(RNN)based machine learning algorithm is proposed in this paper to schedule the charging and discharging of numerous EVs in commercial-building prosumers.Under the proposed system control structure,the LSTM algorithm can be separated into offline and online stages.At the offline stage,the LSTM is used to map states(inputs)to decisions(outputs)based on the network training.At the online stage,once the current state is input,the LSTM can quickly generate a solution without any additional prediction.A preliminary data processing rule and an additional output filtering procedure are designed to improve the decision performance of LSTM network.The simulation results demonstrate that the LSTM algorithm can generate near-optimal solutions in milliseconds and significantly reduce the prediction and calculation pressures compared with the conventional optimization algorithm. 展开更多
关键词 Building energy management system(BEMS) electric vehicle(EV) long short-term memory(LSTM) recurrent neural network machine learning prosumer
原文传递
Slope stability prediction based on a long short-term memory neural network:comparisons with convolutional neural networks,support vector machines and random forest models 被引量:6
10
作者 Faming Huang Haowen Xiong +4 位作者 Shixuan Chen Zhitao Lv Jinsong Huang Zhilu Chang Filippo Catani 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第2期83-96,共14页
The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning mode... The numerical simulation and slope stability prediction are the focus of slope disaster research.Recently,machine learning models are commonly used in the slope stability prediction.However,these machine learning models have some problems,such as poor nonlinear performance,local optimum and incomplete factors feature extraction.These issues can affect the accuracy of slope stability prediction.Therefore,a deep learning algorithm called Long short-term memory(LSTM)has been innovatively proposed to predict slope stability.Taking the Ganzhou City in China as the study area,the landslide inventory and their characteristics of geotechnical parameters,slope height and slope angle are analyzed.Based on these characteristics,typical soil slopes are constructed using the Geo-Studio software.Five control factors affecting slope stability,including slope height,slope angle,internal friction angle,cohesion and volumetric weight,are selected to form different slope and construct model input variables.Then,the limit equilibrium method is used to calculate the stability coefficients of these typical soil slopes under different control factors.Each slope stability coefficient and its corresponding control factors is a slope sample.As a result,a total of 2160 training samples and 450 testing samples are constructed.These sample sets are imported into LSTM for modelling and compared with the support vector machine(SVM),random forest(RF)and convo-lutional neural network(CNN).The results show that the LSTM overcomes the problem that the commonly used machine learning models have difficulty extracting global features.Furthermore,LSTM has a better prediction performance for slope stability compared to SVM,RF and CNN models. 展开更多
关键词 Slope stability prediction Long short-term memory Deep learning Geo-Studio software machine learning model
下载PDF
混合永磁轴向磁场磁通切换记忆电机分段弱磁控制 被引量:6
11
作者 杨公德 林明耀 +5 位作者 李念 付兴贺 刘凯 谭广颖 张贝贝 孔永 《中国电机工程学报》 EI CSCD 北大核心 2017年第22期6557-6566,共10页
混合永磁轴向磁场磁通切换记忆电机(hybrid permanent magnet axial field flux-switching memory machine,HPM-AFFSMM)采用钕铁硼和铝镍钴两种永磁励磁,既具有轴向磁通切换永磁同步电机转矩和功率密度高的优点,又具有记忆电机永磁磁化... 混合永磁轴向磁场磁通切换记忆电机(hybrid permanent magnet axial field flux-switching memory machine,HPM-AFFSMM)采用钕铁硼和铝镍钴两种永磁励磁,既具有轴向磁通切换永磁同步电机转矩和功率密度高的优点,又具有记忆电机永磁磁化状态在线可调的特点。在研究HPM-AFFSMM调磁原理、电磁参数及数学模型的基础上,提出了一种HPM-AFFSMM宽调速控制方法。基于分区控制,低速区采用永磁饱和磁化方式运行,高速区采用分段弱磁方式运行。在分段弱磁区域,所需永磁磁链满足给定转速所在区间内的最大转速对应的永磁磁链。在全速度范围内,为实现充去磁,提出了一种对电机参数敏感性较低的自适应永磁磁链观测器设计方法。仿真和实验结果表明,在低速区,饱和增磁运行缩短了电机的起动过程;在高速区,分段弱磁运行优化了永磁磁链的控制,拓宽了电机的调速范围。因此,HPM-AFFSMM非常适合应用于电动汽车起/发一体机。 展开更多
关键词 混合永磁 磁通切换 记忆电机 在线调磁 分段弱磁 自适应永磁磁链观测器
下载PDF
Classifying Vibration Modes Generated by The Michelson Interferometer Using Machine Learning Methods
12
作者 Xin-Han Tsai Anthony An-Chih Yeh +4 位作者 Chen-Hsin Lu Shang-Yu Chou Shih-Wei Wang Chi-Wei Lee Po-Han Lee 《Journal of Modern Physics》 2024年第12期2169-2192,共24页
In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with at... In this paper, we explore the classification of vibration modes generated by handwriting on an optical desk using deep learning architectures. Three deep learning models—Long Short-Term Memory (LSTM) networks with attention mechanism, Video Vision Transformer (ViViT), and Long-term Recurrent Convolutional Network (LRCN)—were evaluated to determine the most effective method for analyzing time series patterns generated by a Michelson interferometer. The interferometer was used to detect vibration modes created by handwriting, capturing time-series data from the diffraction patterns. Among these models, the LSTM-Attention network achieved the highest validation accuracy, reaching up to 92%, outperforming both ViViT and LRCN. These findings highlight the potential of deep learning in material science for detecting and classifying vibration patterns. The powerful performance of the LSTM-Attention model suggests that it could be applied to similar classification tasks in related fields. 展开更多
关键词 Michelson Interferometer machine Learning Vibration Modes Long Short-Term memory (LSTM)
下载PDF
实时嵌入式系统的高速内存数据库设计 被引量:4
13
作者 何煦岚 《计算机工程与设计》 CSCD 北大核心 2008年第19期4957-4959,共3页
提出了在实时嵌入式系统中使用内存数据库的必要性,并设计了内存数据库中两种不同类型的表结构,线性表和哈希表。介绍了线性表和哈希表的基本特点和基本操作过程,指出了管理数据库对于内存数据库的支持作用和两者之间的数据通信机制,提... 提出了在实时嵌入式系统中使用内存数据库的必要性,并设计了内存数据库中两种不同类型的表结构,线性表和哈希表。介绍了线性表和哈希表的基本特点和基本操作过程,指出了管理数据库对于内存数据库的支持作用和两者之间的数据通信机制,提出了使用通信状态机技术实现两者通信的设计思想,并介绍了状态机3要素的设计和用于通信的各种消息类型,最后通过一个表的传送过程的举例描述了通信过程的典型流程。 展开更多
关键词 实时嵌入式系统 内存数据库 哈希表 管理数据库 状态机 消息驱动
下载PDF
基于Transformer与改进记忆机制的用电量预测研究
14
作者 蔡岳 张津铭 +2 位作者 郭晶 徐玉华 孙知信 《信息技术》 2024年第6期67-74,79,共9页
近年来我国经济的高速发展对电力配置提出了更高要求,实现电力资源的高效配置需要更加精准的用电量预测。随着人工智能、机器学习等技术的发展,高效精准的用电量预测成为可能。目前该领域普遍使用Long Short-Term Memory (LSTM)及其变... 近年来我国经济的高速发展对电力配置提出了更高要求,实现电力资源的高效配置需要更加精准的用电量预测。随着人工智能、机器学习等技术的发展,高效精准的用电量预测成为可能。目前该领域普遍使用Long Short-Term Memory (LSTM)及其变种模型,但准确度相对较低。文中提出了一种基于改进记忆机制与Transformer的用电量预测模型,使用Transformer编码输入,提出了一种新型记忆机制来执行预测。实验表明该方法相较随机森林回归和LSTM及其变种模型,一周内平均误差分别下降9.05%与5.32%,模型收敛速度更快且具有较好的泛化性能。 展开更多
关键词 记忆网络 TRANSFORMER 时序预测 机器学习 长短期记忆
下载PDF
面向忆阻器存内计算架构的高能效编解码机制
15
作者 黄禹 郑龙 +4 位作者 刘海峰 邱启航 辛杰 廖小飞 金海 《中国科学:信息科学》 CSCD 北大核心 2024年第8期1827-1842,共16页
近年来,以忆阻器为代表的存内计算架构被广泛研究,用于加速各种应用,并有望突破冯·诺伊曼(von Neumann)架构面临的内存墙瓶颈.本文观察到忆阻器计算操作的能源消耗存在不对称性,即在低电阻状态下对忆阻器单元的操作能耗可能比在高... 近年来,以忆阻器为代表的存内计算架构被广泛研究,用于加速各种应用,并有望突破冯·诺伊曼(von Neumann)架构面临的内存墙瓶颈.本文观察到忆阻器计算操作的能源消耗存在不对称性,即在低电阻状态下对忆阻器单元的操作能耗可能比在高电阻状态下高出数个数量级.这为通过减少低电阻状态单元的数量来节省计算能源提供了机会.为此,本文提出了一套通用且高效的忆阻器编解码机制,可以无缝集成到现有加速器中,并且不会影响其计算结果.在编码部分,设计了一个基于减法的编码器,实现了低电阻状态到高电阻状态的编码转换,并将编码问题表述为图遍历问题以实现最优的编码结果在解码部分,配备了一个轻量级的硬件解码器,用于还原编码的计算结果,并且避免引入额外的计算时间开销。实验结果显示,本方案在机器学习和图计算等多个领域取得不俗效果,分别实现了高达31.3%和56.0%的能源节约. 展开更多
关键词 存内计算 忆阻器 加速器 高能效 机器学习 图计算
原文传递
基于长短时记忆模型的包虫病爆发风险预测混合模型的建立
16
作者 陈春蓉 赵瑾 +3 位作者 贺兆源 李家宝 陈海兰 贾耿介 《现代畜牧科技》 2024年第8期27-33,共7页
该研究旨在建立一种基于时间序列分解方法与长短时记忆(LSTM)网络的混合模型,用于包虫病等传染性疾病未来爆发风险的预测。首先,从中国国家卫生部科学数据中心获取我国各省份2004—2019年包虫病的发病数据;其次,经过时间序列分解和LSTM... 该研究旨在建立一种基于时间序列分解方法与长短时记忆(LSTM)网络的混合模型,用于包虫病等传染性疾病未来爆发风险的预测。首先,从中国国家卫生部科学数据中心获取我国各省份2004—2019年包虫病的发病数据;其次,经过时间序列分解和LSTM网络分析建立混合预测模型;最后,对预测模型的准确性进行评估。结果表明,与单个LSTM模型相比,时间序列分解得出的趋势分量结合LSTM的混合模型表现出较低的测试误差,表明该模型在预测发病趋势方面具有更高的准确性。该混合模型的建立为包虫病发病风险的准确预测提供了参考和技术支持,对机器学习与传染病相结合的交叉学科领域进行深度探索提供了研究基础。 展开更多
关键词 包虫病 记忆 模型 风险 预测 机器学习
下载PDF
Water quality prediction based on sparse dataset using enhanced machine learning
17
作者 Sheng Huang Jun Xia +2 位作者 Yueling Wang Jiarui Lei Gangsheng Wang 《Environmental Science and Ecotechnology》 SCIE 2024年第4期218-228,共11页
Water quality in surface bodies remains a pressing issue worldwide.While some regions have rich water quality data,less attention is given to areas that lack sufficient data.Therefore,it is crucial to explore novel wa... Water quality in surface bodies remains a pressing issue worldwide.While some regions have rich water quality data,less attention is given to areas that lack sufficient data.Therefore,it is crucial to explore novel ways of managing source-oriented surface water pollution in scenarios with infrequent data collection such as weekly or monthly.Here we showed sparse-dataset-based prediction of water pollution using machine learning.We investigated the efficacy of a traditional Recurrent Neural Network alongside three Long Short-Term Memory(LSTM)models,integrated with the Load Estimator(LOADEST).The research was conducted at a river-lake confluence,an area with intricate hydrological patterns.We found that the Self-Attentive LSTM(SA-LSTM)model outperformed the other three machine learning models in predicting water quality,achieving Nash-Sutcliffe Efficiency(NSE)scores of 0.71 for COD_(Mn)and 0.57 for NH_(3)N when utilizing LOADEST-augmented water quality data(referred to as the SA-LSTMLOADEST model).The SA-LSTM-LOADEST model improved upon the standalone SA-LSTM model by reducing the Root Mean Square Error(RMSE)by 24.6%for COD_(Mn)and 21.3%for NH_(3)N.Furthermore,the model maintained its predictive accuracy when data collection intervals were extended from weekly to monthly.Additionally,the SA-LSTM-LOADEST model demonstrated the capability to forecast pollution loads up to ten days in advance.This study shows promise for improving water quality modeling in regions with limited monitoring capabilities. 展开更多
关键词 Water quality modeling Sparse measurement River-lake confluence Long short-term memory Load estimator machine learning
原文传递
Electromagnetic Performance Analysis of Variable Flux Memory Machines with Series-magnetic-circuit and Different Rotor Topologies
18
作者 Qiang Wei Z.Q.Zhu +4 位作者 Yan Jia Jianghua Feng Shuying Guo Yifeng Li Shouzhi Feng 《CES Transactions on Electrical Machines and Systems》 EI CSCD 2024年第1期3-11,共9页
In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies... In this paper,the electromagnetic performance of variable flux memory(VFM)machines with series-magnetic-circuit is investigated and compared for different rotor topologies.Based on a V-type VFM machine,five topologies with different interior permanent magnet(IPM)arrangements are evolved and optimized under same constrains.Based on two-dimensional(2-D)finite element(FE)method,their electromagnetic performance at magnetization and demagnetization states is evaluated.It reveals that the iron bridge and rotor lamination region between constant PM(CPM)and variable PM(VPM)play an important role in torque density and flux regulation(FR)capabilities.Besides,the global efficiency can be improved in VFM machines by adjusting magnetization state(MS)under different operating conditions. 展开更多
关键词 memory machine Permanent magnet Rotor topologies Series magnetic circuit Variable flux
下载PDF
一种基于虚拟机的动态内存泄露检测方法 被引量:4
19
作者 蔡志强 丁丽萍 贺也平 《计算机应用与软件》 CSCD 北大核心 2012年第9期10-13,153,共5页
内存泄露是一种常见的系统安全问题。虚拟技术是云计算的关键技术,虚拟机环境下的内存泄露不容忽视。而基于虚拟机的内存泄露检测技术尚未成熟。分析虚拟机Xen内核源码中与内存分配有关的代码,提出一种动态检测虚拟机中内存泄露的方法... 内存泄露是一种常见的系统安全问题。虚拟技术是云计算的关键技术,虚拟机环境下的内存泄露不容忽视。而基于虚拟机的内存泄露检测技术尚未成熟。分析虚拟机Xen内核源码中与内存分配有关的代码,提出一种动态检测虚拟机中内存泄露的方法。该方法记录应用程序对资源的申请、释放以及使用情况,插入监测代码,最终检测出内存泄露的代码。实验结果表明,该方法能够有效地检测Xen虚拟机中的内存泄露。 展开更多
关键词 内存泄露 安全检测 虚拟机 XEN
下载PDF
面向数据特征的内存跳表优化技术 被引量:4
20
作者 李梁 吴刚 王国仁 《软件学报》 EI CSCD 北大核心 2020年第3期663-679,共17页
跳表作为数据库中被广泛采用的索引技术,优点在于可以达到类似折半查找的复杂度O(log(n)).但是标准跳表算法中,结点的层数是通过随机算法生成的,这就导致跳表的性能是不稳定的.在极端情况下,查找复杂度会退化到O(n).这是因为经典跳表结... 跳表作为数据库中被广泛采用的索引技术,优点在于可以达到类似折半查找的复杂度O(log(n)).但是标准跳表算法中,结点的层数是通过随机算法生成的,这就导致跳表的性能是不稳定的.在极端情况下,查找复杂度会退化到O(n).这是因为经典跳表结构没有结合数据的特征.一个稳定的跳表结构应该充分考虑数据的分布特征去决定结点层数.基于核密度估计的方式估计数据累积分布函数,预测数据在跳表中的位置,进而设计用于判定结点层数的跳表算法.另外,跳表的查找过程中,结点层数越大的结点被访问的概率越高.针对历史数据的访问频次,设计一种保证频繁访问的“热”数据尽可能地在跳表的上层,而访问较少的“冷”数据在跳表的下层的跳表算法.最后,基于合成数据和真实数据对标准跳表和5种改进的跳表算法进行了全面的实验评估并开源代码.实验结果表明,优化的跳表最高可以获取60%的性能提升.这为未来的科研工作者和系统开发人员指出了一个很好的方向. 展开更多
关键词 内存索引 跳表 机器学习 密度估计
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部