NdF3-LiF melts are commonly used in the electrolysis process of metallic neodymium production. Research on the density and ionic structure of the electrolyte is important for its close connection with the electrolysis...NdF3-LiF melts are commonly used in the electrolysis process of metallic neodymium production. Research on the density and ionic structure of the electrolyte is important for its close connection with the electrolysis mechanism and process. In this paper, the density of LiF-NdF3 melts was studied by the Archimedes method. The results showed that the density decreased with increasing temperature and LiF contents. The changing law was discussed and explained in terms of the micro ionic structure of the melts....展开更多
Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) ...Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) over dot), psi (10)((gamma) over dot) and shear rate ((gamma) over dot), and topologically constrained dimension number n ' and a were derived. Linear viscoelastic parameters (eta (0) and G(N)(0)) and topologically constrained dimension number (n ' a and <(<upsilon>)over bar>) as a function of the primary molecular weight (M-n), molecular weight between entanglements (M-C) and the entanglement sites sequence distribution in polymer chain were determined. A new method for determination of viscoelastic parameters (eta (0), psi (10), G(N)(0) and J(e)(0)), topologically constrained dimension number (n ', a and v) and molecular weight (M-n, M-c and M-e) from the shear flow measurements was proposed. It was used to determine those parameters and structures of HDPE, making a good agreement between these values and those obtained by other methods. The agreement affords a quantitative verification for the molecular theory of nonlinear viscoelasticity with constrained entanglement in polymer melts.展开更多
Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiomet...Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiometry analyses showed that Al (Ⅲ) was reduced at 200℃ in two consecutive steps in an electrolyte of molten AlCl3-NaCl system with a composition 52:48 molar ratio. The current-time characteristics of nucleation aluminum on tungsten showed a strong dependence on overpotentials. Chronoamperometry showed that the deposition process of aluminum on tungsten was controlled by an instantaneous nucleation with a hemispherical diffusion-controlled growth mechanism. The results could lead to a better understanding of the AlCl3-NaCl melt system that has technological importance in electrodeposition of metals as well as in rechargeable batteries.展开更多
Based on the atomicity and molecularity as well as the consistency ofthermodynamic properties and activities of metallic melts with their structures, the coexistencetheory of metallic melts structure involving compoun...Based on the atomicity and molecularity as well as the consistency ofthermodynamic properties and activities of metallic melts with their structures, the coexistencetheory of metallic melts structure involving compound has been suggested. According to this theory,the calculating models of mass action concentrations for different binary metallic melts have beenformulated. The calculated mass action concentrations agree well with corresponding measuredactivities, which confirms that the suggested theory can reflect the structural characteristics ofmetallic melts involving compound and that the mass action law is widely applicable to this kind ofmetallic melts.展开更多
The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the...The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated.展开更多
Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were...Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were reanalyzed. The new quantitative analysis results show that when cryolite ratio(CR) is less than 2, AlF4- is the dominant anion in the melts, and its mole fraction is about 0.70 for melts with CR=1.5 and 0.50 for melts with CR=2. When CR is more than 2.5, the mole fraction of AlF6^3- is relatively large, which is around 0.45 for melts with CR=2.5. Ionic structure of Na3AlF6-Al2O3 melts was investigated by UV-Raman spectroscopy. Octahedral AlF6^3- and tetrahedral AlF4- are proved to exist with possible partial replacement of F- by O^2-. Al2O2F4^2- with a large scattering coefficient also exists in the melts in which alumina concentration is more than 4% (mass fraction). The increase of temperature causes blue-shift of the bands in the Raman spectra.展开更多
The article reviews a brief literature on the rheological properties of polymer melts and blends. Experimental results on polymer blends are summarized. Technically, vital types of multi-phase polymers such as compoun...The article reviews a brief literature on the rheological properties of polymer melts and blends. Experimental results on polymer blends are summarized. Technically, vital types of multi-phase polymers such as compounds and blends are discussed. The importance of the rheological properties of polymer mixtures in the development of the phase structure is discussed. And the importance of considering the stress and/or strain history of a material sample in a rheological investigation is discussed. Finally, the outlook on the past, present and future developments in the field of polymer rheology are given. The review concludes with a brief discussion on the opportunities and challenges in the field of polymer blends and blend rheology.展开更多
We review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-gene...We review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Experimental techniques are described, along with scientific highlights. Future developments are also discussed.展开更多
Based on the phase diagrams, measured activities as well asDeltaG(m) and DeltaG(xs), calculating models of mass action concentrations for metallic melts involving monotectic have been formulated. The calculated result...Based on the phase diagrams, measured activities as well asDeltaG(m) and DeltaG(xs), calculating models of mass action concentrations for metallic melts involving monotectic have been formulated. The calculated results agree with practice on the whole, showing that the models deduced generally can reflect the structural characteristics of these melts. The metastable compounds formed in the melts are of the types A(2)B(3), AB(2), A(2)B(3) or AB and A(2)B(3)+AB etc..展开更多
The gravitational field affects the evolution of multiphase media, such as rocks, soil, and alloy melts. Hypergravity increases the body force of matter, enhancing the driving force of the relative motion between subs...The gravitational field affects the evolution of multiphase media, such as rocks, soil, and alloy melts. Hypergravity increases the body force of matter, enhancing the driving force of the relative motion between substances with different densities and accelerating the evolution of multiphase media. Hypergravity experiments provide a new approach to exploring the motion of multiphase media and solving engineering problems. Hypergravity experiments have been conducted in different disciplines,such as materials science, geological science, and geotechnical engineering. However, the knowledge barriers between various research fields have caused the development of centrifuges/inflight devices and theoretical research on the mechanisms of matter in motion in hypergravity to lag behind the application of hypergravity experiments, limiting the progress in these experiments.This article systematically summarizes and proposes the fundamentals of hypergravity experiments, while the scientific challenge of the nonlinear hypergravity effect induced by high hypergravity on multiphase media evolution is clarified. Evaluation criteria are proposed for the noninertial frame effects of the centrifugal hypergravity field. The development of the high-centrifugal acceleration, large-capacity, and long-beam centrifuges are determined as the future research direction. Representative cases are used to demonstrate the effectiveness and great potential of the hypergravity experiments for the solidification of alloy melts and physical modeling. Challenges in the experimental methodology are also clarified. This paper reviews the fundamentals and applications of hypergravity experiments in various disciplines, pointing out the research direction of hypergravity experiments on multiphase media evolution.展开更多
基金Project supported by the National Basic Research Program of China (2007CB210305) the Fundamental Research Funds for the Central Universities (N090302009)
文摘NdF3-LiF melts are commonly used in the electrolysis process of metallic neodymium production. Research on the density and ionic structure of the electrolyte is important for its close connection with the electrolysis mechanism and process. In this paper, the density of LiF-NdF3 melts was studied by the Archimedes method. The results showed that the density decreased with increasing temperature and LiF contents. The changing law was discussed and explained in terms of the micro ionic structure of the melts....
基金The authors gratefully a.cknowledge financial supportfrom th6 Natiol-al Natural Science Foundatiol- of CI-h-a. The number of
文摘Based on the molecular theory of non-linear viscoelasticity with constrained entanglements in polymer melts, the material functions in simple shear flow were formulated, the theoretical relations between. eta((gamma) over dot), psi (10)((gamma) over dot) and shear rate ((gamma) over dot), and topologically constrained dimension number n ' and a were derived. Linear viscoelastic parameters (eta (0) and G(N)(0)) and topologically constrained dimension number (n ' a and <(<upsilon>)over bar>) as a function of the primary molecular weight (M-n), molecular weight between entanglements (M-C) and the entanglement sites sequence distribution in polymer chain were determined. A new method for determination of viscoelastic parameters (eta (0), psi (10), G(N)(0) and J(e)(0)), topologically constrained dimension number (n ', a and v) and molecular weight (M-n, M-c and M-e) from the shear flow measurements was proposed. It was used to determine those parameters and structures of HDPE, making a good agreement between these values and those obtained by other methods. The agreement affords a quantitative verification for the molecular theory of nonlinear viscoelasticity with constrained entanglement in polymer melts.
基金supported by the National Basic Research Program of China (No.2007CB210305)the National Natural Science Foundation of China (Grant No.50674031).
文摘Electrochemical deposition and nucleation of aluminum on tungsten electrode from AlCl3-NaCl melts were studied by cyclic voltammetry, chronopotentiometry and chronoamperometry. Cyclic voltammetry and chronopotentiometry analyses showed that Al (Ⅲ) was reduced at 200℃ in two consecutive steps in an electrolyte of molten AlCl3-NaCl system with a composition 52:48 molar ratio. The current-time characteristics of nucleation aluminum on tungsten showed a strong dependence on overpotentials. Chronoamperometry showed that the deposition process of aluminum on tungsten was controlled by an instantaneous nucleation with a hemispherical diffusion-controlled growth mechanism. The results could lead to a better understanding of the AlCl3-NaCl melt system that has technological importance in electrodeposition of metals as well as in rechargeable batteries.
文摘Based on the atomicity and molecularity as well as the consistency ofthermodynamic properties and activities of metallic melts with their structures, the coexistencetheory of metallic melts structure involving compound has been suggested. According to this theory,the calculating models of mass action concentrations for different binary metallic melts have beenformulated. The calculated mass action concentrations agree well with corresponding measuredactivities, which confirms that the suggested theory can reflect the structural characteristics ofmetallic melts involving compound and that the mass action law is widely applicable to this kind ofmetallic melts.
文摘The microstructure and phase composition of high-alumina,chromic oxide,and AZS/Cr refractories containing 30%and 60%(by mass)Cr_(2)O_(3) after exposure to aluminaboronsilicate glasses and basalt melts depending on the type of melts and temperature have been studied.The mechanisms of refractory corrosion by the used melts and the factors contributing to the inhibition of corrosion development have been investigated by the method of petrographic analysis.On the basis of obtained results,the use of high-alumina,chromic oxide,and AZS/Cr refractories in the sections of glass furnace linings,experiencing the intensive impact of aluminaboronsilicate glasses and basalt melts,has been confirmed and scientifically substantiated.
基金Project (51004034) supported by the National Natural Science, ChinaProject(N090302009) supported by the Fundamental Research Funds for the Central Universities, China
文摘Raman spectrum of molten cryolite was recorded. Based on the new understanding of the scattering coefficients, contents of various structural entities in acidic NaF-AlF3 melts at 942-1 024 ℃ in previous research were reanalyzed. The new quantitative analysis results show that when cryolite ratio(CR) is less than 2, AlF4- is the dominant anion in the melts, and its mole fraction is about 0.70 for melts with CR=1.5 and 0.50 for melts with CR=2. When CR is more than 2.5, the mole fraction of AlF6^3- is relatively large, which is around 0.45 for melts with CR=2.5. Ionic structure of Na3AlF6-Al2O3 melts was investigated by UV-Raman spectroscopy. Octahedral AlF6^3- and tetrahedral AlF4- are proved to exist with possible partial replacement of F- by O^2-. Al2O2F4^2- with a large scattering coefficient also exists in the melts in which alumina concentration is more than 4% (mass fraction). The increase of temperature causes blue-shift of the bands in the Raman spectra.
文摘The article reviews a brief literature on the rheological properties of polymer melts and blends. Experimental results on polymer blends are summarized. Technically, vital types of multi-phase polymers such as compounds and blends are discussed. The importance of the rheological properties of polymer mixtures in the development of the phase structure is discussed. And the importance of considering the stress and/or strain history of a material sample in a rheological investigation is discussed. Finally, the outlook on the past, present and future developments in the field of polymer rheology are given. The review concludes with a brief discussion on the opportunities and challenges in the field of polymer blends and blend rheology.
基金support from the National Science Foundation (Nos. EAR-0001088, 0711057, and 1214376)Guoyin Shen acknowledges support from the DOE (Nos. DE-NA0001974 and DE-FG02-99ER45775)+5 种基金COMPRES for the support in developing the PEP system. Portions of this work were performed at GeoS oilE nviroC ARS (Sector 13), Advanced Photon Source (APS), Argonne National LaboratoryGeo Soil Enviro CARS is supported by the National Science Foundation-Earth Sciences (No. EAR-1128799)Department of Energy-Geo Sciences (No. DE-FG02-94ER14466)HPCAT operations are supported by DOE-NNSA under Award (Nos. DE-NA0001974)DOE-BES under Award (No. DE-FG02-99ER45775), with partial instrumentation funding by NSFUse of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract (No. DE-AC02-06CH11357)
文摘We review recent progress in studying silicate, carbonate, and metallic liquids of geological and geophysical importance at high pressure and temperature, using the large-volume high-pressure devices at the third-generation synchrotron facility of the Advanced Photon Source, Argonne National Laboratory. These integrated high-pressure facilities now offer a unique combination of experimental techniques that allow researchers to investigate structure, density, elasticity, viscosity, and interfacial tension of geo-liquids under high pressure, in a coordinated and systematic fashion. Experimental techniques are described, along with scientific highlights. Future developments are also discussed.
文摘Based on the phase diagrams, measured activities as well asDeltaG(m) and DeltaG(xs), calculating models of mass action concentrations for metallic melts involving monotectic have been formulated. The calculated results agree with practice on the whole, showing that the models deduced generally can reflect the structural characteristics of these melts. The metastable compounds formed in the melts are of the types A(2)B(3), AB(2), A(2)B(3) or AB and A(2)B(3)+AB etc..
基金supported by the Basic Science Center Program for Multiphase Media Evolution in Hypergravity of the National Natural Science Foundation of China (Grant No. 51988101)the National Major Scientific and Technological Infrastructure-Centrifugal Hypergravity and Interdisciplinary Experimental Facility (CHIEF)Financial support from the Chinese Program of Introducing Talents of Discipline to University (the 111 Project, Grant No. B18047)。
文摘The gravitational field affects the evolution of multiphase media, such as rocks, soil, and alloy melts. Hypergravity increases the body force of matter, enhancing the driving force of the relative motion between substances with different densities and accelerating the evolution of multiphase media. Hypergravity experiments provide a new approach to exploring the motion of multiphase media and solving engineering problems. Hypergravity experiments have been conducted in different disciplines,such as materials science, geological science, and geotechnical engineering. However, the knowledge barriers between various research fields have caused the development of centrifuges/inflight devices and theoretical research on the mechanisms of matter in motion in hypergravity to lag behind the application of hypergravity experiments, limiting the progress in these experiments.This article systematically summarizes and proposes the fundamentals of hypergravity experiments, while the scientific challenge of the nonlinear hypergravity effect induced by high hypergravity on multiphase media evolution is clarified. Evaluation criteria are proposed for the noninertial frame effects of the centrifugal hypergravity field. The development of the high-centrifugal acceleration, large-capacity, and long-beam centrifuges are determined as the future research direction. Representative cases are used to demonstrate the effectiveness and great potential of the hypergravity experiments for the solidification of alloy melts and physical modeling. Challenges in the experimental methodology are also clarified. This paper reviews the fundamentals and applications of hypergravity experiments in various disciplines, pointing out the research direction of hypergravity experiments on multiphase media evolution.