针对厚度为4 mm的2219-T87铝合金进行惰性气体钨极保护焊(Tungsten inert gas arcwelding,TIGAW)试验研究,分析焊缝的组织结构及力学性能。拉伸试验结果显示,接头试样平均屈服强度为母材的49.3%,平均抗拉强度为母材的67.8%,断后伸长率...针对厚度为4 mm的2219-T87铝合金进行惰性气体钨极保护焊(Tungsten inert gas arcwelding,TIGAW)试验研究,分析焊缝的组织结构及力学性能。拉伸试验结果显示,接头试样平均屈服强度为母材的49.3%,平均抗拉强度为母材的67.8%,断后伸长率为母材的18.5%。测试了焊接试样各区域的显微硬度,测试结果表明焊缝区域硬度高于其他部位,其中熔合线和热影响区之间的显微硬度最低,同时焊接试样的整体区域硬度均比母材低。对焊接试样进行腐蚀试验,发现接头焊缝区抗腐蚀能力明显强于母材。要提高2219铝合金焊接性能,需改进焊接工艺,减少熔合区以及热影响区的粗大晶粒的形成,解决CuAl2相的偏析等问题。展开更多
Magnetic properties and magnetization processes of Co nanowire arrays with various packing densities are investigated by means of object-oriented micromagnetic framework(OOMMF) software package with finite differenc...Magnetic properties and magnetization processes of Co nanowire arrays with various packing densities are investigated by means of object-oriented micromagnetic framework(OOMMF) software package with finite difference micromagnetic simulations. The packing density of nanowires is changed with the diameter, number of nanowires and center-to-center spacing between the wires. The magnetization reversal mechanism and squareness of the hysteresis loops of the nanowire arrays are very sensitive to the packing density of nanowires. Clear steps and plateaux on the demagnetization are visible,which turns out that dipolar interactions among the wires have a significant influence on switching field.展开更多
Activation volume V , activation enthalpy Δ H , activation free enthalpy Δ G and activation entropy Δ S of tensile deformation of Ti 47Al 2Mn 2Nb alloy with near lamellar microstructure were measured at yield point...Activation volume V , activation enthalpy Δ H , activation free enthalpy Δ G and activation entropy Δ S of tensile deformation of Ti 47Al 2Mn 2Nb alloy with near lamellar microstructure were measured at yield point using strain rate jumping method in a temperature range from 77 K to 1 373 K. Based on the measured values of activation parameters and temperature dependence of tensile properties, different thermally activated dislocation motion mechanisms were speculated to control tensile deformation of the alloy in three temperature regions: in low temperature region (77~398 K), the mechanism is mainly characterized by the overcoming of Peierls Nabarro friction; in intermediate temperature region (398~1 073 K), the mechanism is an abnormally weak thermal activated motion; in high temperature region (1 073~1 373 K), dislocation climbing is the controlling mechanism.展开更多
Acicular goethite(a-Fe OOH) and worm-like maghamite(γ-Fe2O3) nanostructures have been prepared adopting a novel route, using Na2[Fe(HL)2(H2O)2] chelate complex in alkaline medium. It is found that concentrati...Acicular goethite(a-Fe OOH) and worm-like maghamite(γ-Fe2O3) nanostructures have been prepared adopting a novel route, using Na2[Fe(HL)2(H2O)2] chelate complex in alkaline medium. It is found that concentration of hydrated Fe(III) ions increased with increasing temperature, which later play a key role in generation of different phases of iron oxide. Phase and morphology of the products are investigated using XRD, FTIR, SEM, and TEM analysis. Using UV–Vis spectra, various electronic transitions of goethite and maghamite particles are examined. Maghamite nanostructures exhibit superparamagnetic property at room temperature. On the basis of experimental observations and analytical data, growth mechanism of the nanostructures is discussed.展开更多
文摘针对厚度为4 mm的2219-T87铝合金进行惰性气体钨极保护焊(Tungsten inert gas arcwelding,TIGAW)试验研究,分析焊缝的组织结构及力学性能。拉伸试验结果显示,接头试样平均屈服强度为母材的49.3%,平均抗拉强度为母材的67.8%,断后伸长率为母材的18.5%。测试了焊接试样各区域的显微硬度,测试结果表明焊缝区域硬度高于其他部位,其中熔合线和热影响区之间的显微硬度最低,同时焊接试样的整体区域硬度均比母材低。对焊接试样进行腐蚀试验,发现接头焊缝区抗腐蚀能力明显强于母材。要提高2219铝合金焊接性能,需改进焊接工艺,减少熔合区以及热影响区的粗大晶粒的形成,解决CuAl2相的偏析等问题。
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51401001,51371002,and 51331003)the International S&T Cooperation Program of China(Grant No.2015DFG52020)
文摘Magnetic properties and magnetization processes of Co nanowire arrays with various packing densities are investigated by means of object-oriented micromagnetic framework(OOMMF) software package with finite difference micromagnetic simulations. The packing density of nanowires is changed with the diameter, number of nanowires and center-to-center spacing between the wires. The magnetization reversal mechanism and squareness of the hysteresis loops of the nanowire arrays are very sensitive to the packing density of nanowires. Clear steps and plateaux on the demagnetization are visible,which turns out that dipolar interactions among the wires have a significant influence on switching field.
文摘Activation volume V , activation enthalpy Δ H , activation free enthalpy Δ G and activation entropy Δ S of tensile deformation of Ti 47Al 2Mn 2Nb alloy with near lamellar microstructure were measured at yield point using strain rate jumping method in a temperature range from 77 K to 1 373 K. Based on the measured values of activation parameters and temperature dependence of tensile properties, different thermally activated dislocation motion mechanisms were speculated to control tensile deformation of the alloy in three temperature regions: in low temperature region (77~398 K), the mechanism is mainly characterized by the overcoming of Peierls Nabarro friction; in intermediate temperature region (398~1 073 K), the mechanism is an abnormally weak thermal activated motion; in high temperature region (1 073~1 373 K), dislocation climbing is the controlling mechanism.
文摘Acicular goethite(a-Fe OOH) and worm-like maghamite(γ-Fe2O3) nanostructures have been prepared adopting a novel route, using Na2[Fe(HL)2(H2O)2] chelate complex in alkaline medium. It is found that concentration of hydrated Fe(III) ions increased with increasing temperature, which later play a key role in generation of different phases of iron oxide. Phase and morphology of the products are investigated using XRD, FTIR, SEM, and TEM analysis. Using UV–Vis spectra, various electronic transitions of goethite and maghamite particles are examined. Maghamite nanostructures exhibit superparamagnetic property at room temperature. On the basis of experimental observations and analytical data, growth mechanism of the nanostructures is discussed.