The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on th...The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on the complex terrain.The leg unit with adjustive pitch provides a large workspace and empowers the legs to climb up obstacles in large sizes,which enhances the obstacle surmounting capability.The pitch adjustment in leg unit requires as few independent adjusting actuators as possible.Based on the kinematic analysis of the mechanical leg,the biped and quadruped leg units with adjustive pitch are analyzed and compared.The configuration of the robot is designed to obtain a compact structure and pragmatic performance.The uncertainty of the obstacle size and position in the surmounting process is taken into consideration and the parameters of the adjustments and the feasible strategies for obstacle surmounting are presented.Then the 3D virtual model and the robot prototype are built and the multi-body dynamic simulations and prototype experiments are carried out.The results from the simulations and the experiments show that the robot possesses good obstacle surmounting capabilities.展开更多
For most legged robots the drive-motors are mounted on the joints of legs, which increase leg's mass and rotary inertia. When mounted on legs, the drive-motor has to rotate clockwise and anticlockwise periodically to...For most legged robots the drive-motors are mounted on the joints of legs, which increase leg's mass and rotary inertia. When mounted on legs, the drive-motor has to rotate clockwise and anticlockwise periodically to swing a leg back and forth. Larger inertia of the leg, as well as the ever-changing status of frequent acceleration and deceleration of the motors, limits the moving speed of the legged robots. This article proposes an improved mechanical design to overcome such problems. All the drive-motors are installed on the robot body to reduce the rotary inertia of the legs. Then a crank-rocker mechanism is used to transform continuous rotation of motors to back and forth motion of the leg. With this scheme, the motor may reach higher rotation speed since it drives a lighter leg with no change of the rotation direction. In addition, an elastic tendon is attached to the ankle to reduce the pulse stress on the leg. Kinematics and dynamics analysis demonstrates that the new design enlarges end-workspace, reduces driving torque and increases ground reaction force, which means the new robot has lager stride and higher swing frequency of leg to achieve faster moving.展开更多
African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping desi...African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping design of the leg mechanism of the legged robot,the principle of engineering bionics was applied.According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb,combined with the proportion and size of the structure of the ostrich hindlimb,the bionic rigid⁃flexible composite legged robot single⁃leg structure was designed.The locomotion of the bionic mechanical leg was simulated by means of ADAMS.Through the motion simulation analysis,the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied,and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm,and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg.Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%.展开更多
基金Supported by National Natural Science Foundation of China(Grant No.51735009).
文摘The paper proposes a novel multi-legged robot with pitch adjustive units aiming at obstacle surmounting.With only 6 degrees of freedom,the robot with 16 mechanical legs walks steadily and surmounts the obstacles on the complex terrain.The leg unit with adjustive pitch provides a large workspace and empowers the legs to climb up obstacles in large sizes,which enhances the obstacle surmounting capability.The pitch adjustment in leg unit requires as few independent adjusting actuators as possible.Based on the kinematic analysis of the mechanical leg,the biped and quadruped leg units with adjustive pitch are analyzed and compared.The configuration of the robot is designed to obtain a compact structure and pragmatic performance.The uncertainty of the obstacle size and position in the surmounting process is taken into consideration and the parameters of the adjustments and the feasible strategies for obstacle surmounting are presented.Then the 3D virtual model and the robot prototype are built and the multi-body dynamic simulations and prototype experiments are carried out.The results from the simulations and the experiments show that the robot possesses good obstacle surmounting capabilities.
基金This work is supported by the National Natural Science Foundation of China (Grant No: 50875100) and the National Basic Research Program of China (Grant No: 2013CB035805).
文摘For most legged robots the drive-motors are mounted on the joints of legs, which increase leg's mass and rotary inertia. When mounted on legs, the drive-motor has to rotate clockwise and anticlockwise periodically to swing a leg back and forth. Larger inertia of the leg, as well as the ever-changing status of frequent acceleration and deceleration of the motors, limits the moving speed of the legged robots. This article proposes an improved mechanical design to overcome such problems. All the drive-motors are installed on the robot body to reduce the rotary inertia of the legs. Then a crank-rocker mechanism is used to transform continuous rotation of motors to back and forth motion of the leg. With this scheme, the motor may reach higher rotation speed since it drives a lighter leg with no change of the rotation direction. In addition, an elastic tendon is attached to the ankle to reduce the pulse stress on the leg. Kinematics and dynamics analysis demonstrates that the new design enlarges end-workspace, reduces driving torque and increases ground reaction force, which means the new robot has lager stride and higher swing frequency of leg to achieve faster moving.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51675221 and 91748211)the Science and Technology Development Planning Project of Jilin Province of China(Grant No.20180101077JC)the Science and Technology Research Project in the 13th Five⁃Year Period of Education Department of Jilin Province(Grant No.JJKH20190134KJ).
文摘African ostrich can run for 30 min at a speed of 60 km/h in the desert,and its hindlimb has excellent energy saving and vibration damping performance.In order to realize the energy⁃efficient and vibration⁃damping design of the leg mechanism of the legged robot,the principle of engineering bionics was applied.According to the passive rebound characteristic of the intertarsal joint of the ostrich foot and the characteristic of variable output stiffness of the ostrich hindlimb,combined with the proportion and size of the structure of the ostrich hindlimb,the bionic rigid⁃flexible composite legged robot single⁃leg structure was designed.The locomotion of the bionic mechanical leg was simulated by means of ADAMS.Through the motion simulation analysis,the influence of the change of the inner spring stiffness coefficient within a certain range on the vertical acceleration of the body centroid and the motor power consumption was studied,and the optimal stiffness coefficient of the inner spring was obtained to be 200 N/mm,and it was further verified that the inner and outer spring mechanism could effectively reduce the energy consumption of the mechanical leg.Simulation results show that the inner and outer spring mechanism could effectively reduce the motor energy consumption by about 72.49%.